


 Our senior design project focuses on developing a system to assist umpires in detecting illegal 
 pitches in slow-pitch softball games. The problem arises from the challenge of accurately 
 determining whether a pitch falls outside the legal bounds of 10 to 12 feet in height, leading to 
 inconsistent calls and disputes. Our solution aims to eliminate this ambiguity, allowing umpires to 
 focus on other aspects of the game while ensuring fairness and accuracy. 

 To address this issue, we are designing a mobile application that leverages computer vision and 
 machine learning to analyze softball pitches in real-time. This approach removes the need for 
 leagues to invest in expensive or specialized hardware, making our solution cost-effective and 
 accessible to a wide range of users. The app uses YOLO (You Only Look Once) for object detection 
 and tracking, enabling it to identify the softball and monitor its trajectory throughout the pitch. 

 The key design requirements include accuracy in determining pitch legality, minimal interference 
 with the flow of the game, and affordability for users. Feedback from current umpires has validated 
 these priorities, and our design aligns with their expectations. 

 Thus far, we have implemented the YOLO model to run within our Flutter application using a 
 plugin developed by the Ultralytics team. Due to the plugins limited functionality though we had to 
 alter it to better fit our needs. Additionally, we have developed calibration functionality that allows 
 the user to define key reference points—such as the pitcher's mound and home plate—and input 
 the camera's height. This calibration maps the physical space into a frame of reference, enabling 
 precise height calculations for the pitch and determining whether it is legal. 

 Our design meets the defined requirements by ensuring the app runs smoothly on readily available 
 iOS devices, avoiding the need for additional hardware. Accuracy is achieved through rigorous 
 training of a YOLO model and strict setup instructions. The next steps include adding additional 
 features to our app outside of the main functionality, like a past pitches screen. 

 By enabling umpires to confidently identify illegal pitches, our product aims to improve the quality 
 and fairness of games while maintaining accessibility and usability for all levels of softball leagues. 



 Learning Summary 

 Summary of requirements: 

 -  Object detection system to locate a softball at its maximum height during a 
 pitch. 

 -  Detect an illegal pitch when a softball’s maximum height is higher than the 
 specific maximum height or below the specific minimum height. 

 -  Create an audible sound indicating an illegal pitch. 

 -  The device cannot be physically obstructive to the game. 

 -  The device must accommodate different fields, lighting, and balls. 

 -  The device cannot be visually distracting to the game. 

 -  The device must have a guided and simple setup. 

 -  The device must have user-adjustable settings for the maximum and 
 minimum height for pitches. 

 New skills/knowledge acquired that was not taught in courses: 
 -  Computer Vision 

 -  Machine learning applications 

 -  Flutter framework 

 -  iOS development 
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 1.  Introduction 

 1.1.  Problem Statement 

 In the game of softball, one crucial rule states that a pitch is only legal if the ball reaches its peak 
 height within a minimum and maximum height bound during its flight to the batter. Currently, 
 umpires must estimate this height by eye for every single pitch: a challenging task that relies heavily 
 on personal judgment and can vary from one umpire to another. This reliance on subjective 
 estimation can lead to inconsistent calls, potentially altering the outcome of games and affecting 
 the fairness and enjoyment of the sport. Players might strike out on pitches that should have been 
 deemed illegal, and fans may witness games swayed by questionable decisions. 

 These issues highlight a broader problem: the lack of accessible technology to assist in making 
 precise, real-time measurements during games. To address this, we are developing an affordable 
 and user-friendly device that tracks each pitch using a single camera, accurately measures the ball's 
 height using machine learning, and alerts officials when a pitch falls outside the legal bounds. By 
 eliminating the guesswork from pitch height estimation, we aim to enhance the accuracy of calls, 
 uphold the integrity of the game, and improve the experience for players, umpires, and fans alike. 

 1.2.  Intended Users 

 Our product is designed to benefit several key groups within the softball community, including 
 umpires, players, fans, and coaches. 

 1.  Umpires 
 a.  Description  : Umpires are the officials responsible  for enforcing the rules of 

 softball during games. They must make quick, accurate decisions under the 
 pressure of real-time play, often without technological assistance. 

 b.  Needs  : Umpires need a reliable method to accurately  determine if a pitch meets 
 the legal height requirements, reducing the reliance on subjective judgment and 
 minimizing errors that could impact the game's outcome. 

 c.  Benefits  : Our device provides umpires with precise,  real-time measurements of 
 each pitch's height. This technology aids them in making consistent and accurate 
 calls, reducing stress and enhancing their confidence in officiating. By supporting 
 umpires with accurate data, we help maintain the game's fairness and integrity, 
 directly addressing the issues outlined in our problem statement. 

 2.  Players 
 a.  Description  : All players in a softball game are directly  affected by the calls made 

 by umpires and strive for a fair and competitive environment to showcase their 
 skills. 

 b.  Needs  : Players need assurance that the rules are being  applied consistently so that 
 their performance is judged fairly. Batters, in particular, need protection from 
 illegal pitches that could unfairly result in strikeouts. 

 c.  Benefits  : With our device ensuring accurate detection  of illegal pitches, players 
 can trust that the game is being officiated fairly. Batters are less likely to be unfairly 
 penalized, and pitchers receive clear feedback on the legality of their pitches. This 
 fosters a fair playing field and allows players to focus on their performance, 
 enhancing the game's overall quality in line with our problem-solving goals. 



 3.  Fans 
 a.  Description  : Fans are the spectators who enjoy watching  softball games, whether 

 in person at the stadium or through broadcasts. They are passionate about the 
 sport and value exciting, fair competition. 

 b.  Needs  : Fans desire an enjoyable viewing experience  where player skill rather than 
 officiating errors determine the game's outcome. They appreciate transparency and 
 fairness in how the game is played and called. 

 c.  Benefits  : By improving the accuracy of pitch legality  calls, our device enhances the 
 fairness and excitement of the game, leading to a more satisfying experience for 
 fans. They can enjoy the sport knowing that technology is helping to uphold its 
 integrity, which aligns with our aim to improve the overall enjoyment of softball. 

 4.  Coaches and Teams 
 a.  Description  : Coaches and team staff are responsible  for training players and 

 developing game strategies. They work closely with players to improve skills and 
 ensure compliance with the rules. 

 b.  Needs  : Coaches need effective tools to train pitchers  on delivering legal pitches 
 and to adjust strategies based on accurate information about gameplay. 

 c.  Benefits  : Our device can be used during practices  to provide immediate feedback 
 to pitchers on the height of their pitches, aiding in skill development and rule 
 compliance. During games, accurate officiating supported by our product allows 
 coaches to focus on strategy without worrying about inconsistent calls. This 
 directly enhances player performance and upholds fair competition, as highlighted 
 in our problem statement. 

 By serving these users, our product addresses the critical issue of subjective pitch height estimation 
 in softball. It promotes fair play, enhances the accuracy of officiating, and improves the overall 
 experience for everyone involved in the sport. Our solution connects directly to our overarching 
 goal of removing guesswork from the game, ensuring that softball is enjoyable, fair, and competitive 
 for all participants 



 2.  Requirements, Constraints, And Standards 

 2.1.  Requirements & Constraints 

 Functional Requirements 

 -  Object detection system to locate a softball at its maximum height during a pitch. 
 -  Detect an illegal pitch when a softball’s maximum height is higher than the specific 

 maximum height or below the specific minimum height. (constraint) 
 -  Create an audible sound indicating an illegal pitch 

 Physical Requirements 

 -  The device cannot be physically obstructive to the game. 
 -  The device must be portable to set up on a softball field. 

 Environmental Requirements 

 -  The device must accommodate different fields, lighting, and balls. 
 -  The device cannot be visually or audibly distracting to the game. 

 UI Requirements 

 -  The device must have a guided and simple setup. 
 -  The device must have user-adjustable settings for the maximum and minimum height for 

 pitches. (constraint) 

 Constraints 

 -  Maximum height (in feet) the softball can reach on a serve. 
 -  Minimum height (in feet) the softball must reach on a serve. 
 -  The device cannot be physically obstructive to the game. 



 2.2.  Engineering Standards 

 The Importance of Engineering Standards (Q1) 

 Engineering standards are important because people interact with engineering products every day. 
 If there were no engineering standards, that would not only compromise the desired quality of 
 engineering products but also affect things like the safety of everyday people. For example, people 
 interact with civil engineering like bridges and buildings, and non-physical structures like apps and 
 programs. A lack of requirements for these products could result in catastrophic failures of civil 
 structures or a breach of confidential personal data from an insecure application. Engineering 
 standards help ensure that these types of issues are avoided so people can continue to use these 
 products to improve their lives and the lives of others 

 Published Engineering Standards (Q2) 

 -  IEEE 1857.9-2022  provides standards for video encoding/decoding  and analyzing methods. 
 These standards apply to all forms of video manipulation, spanning from areas such as 
 network video transmission over services such as UDP to computer vision topics such as 
 object detection. 

 -  IEEE P3110  provides the standards for the necessary  API requirements in a computer vision 
 implementation. These API abstractions interface with various machine learning 
 algorithms and are used to develop computer vision solutions such as OpenCV. 

 -  IEEE 1008-1987  provides guidelines for proper unit  testing with a codebase. Specifically, 
 guidelines exist for proper categories of testing (unit, integration, etc.) and code coverage 
 reporting, among other testing-related requirements. 

 Engineering Standards Relevancy (Q3) 

 After reviewing the three standards, each has varying relevance to our project. Since our primary 
 focus is on computer vision, IEEE P3110 is highly applicable. This standard provides guidelines for 
 API requirements in computer vision and will help us ensure our project adheres to best practices 
 when working with machine learning models like YOLO. It offers a strong foundation for 
 structuring our computer vision solution. IEEE 1008-1987 also holds some relevance, as it provides 
 useful guidelines for software testing. While our project’s smaller scale, incorporating structured 
 unit testing can still improve code reliability. On the other hand, IEEE 1857.9-2022 is less applicable 
 since it focuses more on video encoding and compression, which isn’t central to our object 
 detection work. 

 Other Applicable Standards (Q4) 

 Some of the standards we found that differed from those provided that might be at least somewhat 
 applicable to our project are below. IEEE Standard Digital Interface for Programmable 
 Instrumentation. This standard applies because we use equipment and information that takes in 
 different measurements. We will use different types of instrumentation that may be programmable 
 to detect the softball. IEEE Standard for Application Programming Interfaces (APIs) for Deep 
 Learning (DL) Inference Engines. This engineering standard is applicable because we are 
 programming a solution to consistently and accurately find the height of a softball, including deep 
 learning and AI-based detection algorithms. IEEE Standard Letter Symbols for Units of 
 Measurement (SI Customary Inch-Pound Units, and Certain Other Units). This standard is 



 applicable because it ensures that we incorporate the appropriate symbols for our measurement 
 and that it is understood clearly using accurate measurements and symbols. 

 Modifying Our Project to Incorporate Engineering Standards (Q5) 

 Since our design is not finalized as we continue to test and prototype different designs, we don’t 
 need to make any modifications now. However, several of these standards must be considered as we 
 proceed with our design. Firstly, as we develop the software component of the project, we will need 
 to keep in mind IEEE 1008-1978 regarding unit testing. We need to ensure that we are writing the 
 software in a way that can be easily tested. We will also need to consider IEEE P3110 which covers 
 standards with computer vision. Since many of us have never built an official project using 
 computer vision, it is not natural to consider these standards. Moving forward, standards like this 
 one must be considered during design 

 3 Project Plan 

 3.1 Project Management/Tracking Procedures 

 We decided to adopt an AGILE methodology to manage our project. There are complex 
 components we need to manage with our app. These components include our height detection 
 script utilizing a machine learning approach and a mobile app utilizing Flutter and the Ultralytics 
 Flutter plugin. To make development more manageable, we can divide the work into AGILE sprints 
 with smaller goals, so we are not trying to tackle the entire project at once. This will improve our 
 understanding of individual project components and help make a full implementation easier. To 
 keep track of our progress, we are utilizing Git issues coupled with personal branches for individual 
 development. Having an issues board will help us manage what tasks must be done. Using personal 
 branches will help isolate development so we can develop individual components more efficiently 
 without accidentally breaking the project's main branch or having more than one person alter the 
 same file in different ways. 



 3.2 Task Decomposition 

 These tasks are intentionally left broad since we have not made final decisions on the entire design. 
 Based on the AGILE methodology, many of these tasks will be adjusted as development continues 
 and we receive feedback from the client. Any testing and prototyping would  also affect our final 
 implementation of these tasks. With this task decomposition, we split the project into two major 
 tasks: detecting illegal pitches and developing the mobile application. These two tasks are the most 
 significant challenges and are further broken into subtasks. In creating a model-compatible 
 frontend we needed height calculation, pitch detection, and setup techniques. In developing an 
 object tracking model we must collect, annotate, and augment data for training. Integration of the 
 model and frontend would be completed for a fully functional application. 

 3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 

 In an AGILE development process, these milestones can be refined with successive 
 iterations/sprints (perhaps a subset of your requirements applicable to those sprint). 



 3.4 Project Timeline/Schedule 

 Above is our proposed AGILE project timeline, featuring a clearly outlined sequential list of 
 milestones. Our project has been separated into four parallel-running distinct categories: UI 
 enhancements, testing, (object) tracking refinemenst, and collecting user feedback . Following an 
 AGILE methodology, we have separated our project timeline into roughly one-week sprints where 
 certain tasks are scheduled for completion. Each bar on the above Gantt chart represents a 
 deliverable within an AGILE timeframe set to expire at the bar's end. Holistically, the above Gantt 
 chart can be summarized in sprints as follows: 

 Timeframe/Deliverables 

 02/03 - 02/09 (Sprint 1) 

 -  Create test plan 
 -  Develop prototype plans 

 02/10- 02/16 (Sprint 2) 

 -  Initial tests 

 02/17 - 02/23 (Sprint 3) 

 -  Improve runtime 
 -  Improve functionality 

 02/23 -03/02 (Sprint 4) 

 -  Add Visuals 
 -  Add Videos 
 -  Start trying to combine app with model 

 03/03 -03/09 (Sprint 5) 

 -  Test product with users 
 -  Keep testing 

 03/10 -03/16 (Sprint 6) 

 -  Continue Testing 



 -  Fix bugs and improve optimality 

 03/17 - 03/23 (Sprint 7) 

 -  Continue Testing 
 -  Make sure tests are going smoothly 

 03/24 - 03/30 (Sprint 8) 

 -  Apply feedback to app 

 03/31 - 04/06 (Sprint 9) 

 -  Continued improvement 
 -  Fix issues and or areas that need improvement 

 04/07 - 04/13 (Sprint 10) 

 -  Test more with added improvements 
 -  Try and find and then fix any issues 

 04/14 - 04/20 (Sprint 11) 

 -  Add final functionalities of the app that will be used 

 04/21 - 04/27 (Sprint 12) 

 -  Present final product to users for testing 
 -  Make final adjustments and improvements of the app/code 

 04/28 - 05/04 (Sprint 13) 

 -  Finish the full working app 
 -  Complete all final deliverables 

 3.5 Risks and Risk Management/Mitigation 

 Sprint 1: 

 -  Risks: 
 -  Our current implementation of the opencv C++ backend with flutter isn’t 

 ideal, as the implementation and usage of both of them currently are separate 
 and need to be implemented together if we want to make any sort of progress. 

 -  Mitigation: 
 -  Try and merge our flutter project app development with our new C++ backend of 

 the opencv implementation 

 Sprint 2: 

 -  Risks: 



 -  The main issue is that running yolo on the phone without utilizing Apple’s 
 ML framework causes significant frame hangs and stutters 

 -  We are also having difficulty translating the frame coordinates for the raw 
 image data to the coordinate system flutter is using. 

 -  Mitigation: 
 -  Potentially implement the Ultralytics plugin model that can better run the yolo 

 model much faster and with less framerate loss. Could also run faster than before 
 as well. 

 Sprint 3: 

 -  Risks: 
 -  YOLO through the Ultralytics functions still need to be integrated into 

 Flutter’s tracking thread. A finer-tuned model can also help YOLO’s accuracy 
 in determining only softballs within the frame. 

 -  The height calculations when self-identifying the ball still needs to be unit 
 tested, and there is currently an error with iOS setup. 

 -  Grid layout still needs to be implemented. 
 -  Mitigation: 

 -  Implement the grid layout as quickly as possible, allow the integration of YOLO 
 through Ultralytics in flutter’s tracking thread. Test and ensure the accuracy of the 
 height calculation 

 Sprint 4: 

 -  Risks: 
 -  Ultralytics still has some issues when implementing this and the overall 

 implementation of all of these parts still needs to be studied and merged together. 
 -  Mitigation: 

 -  Continue debugging the issues with Ultralytics YOLO and make sure that we start 
 merging the other aspects together. 

 Sprint 5: 

 -  Risks: 
 -  Currently, all of our components are separate 
 -  We need to get a central screen that meshes everything we have worked on to 

 beg to not have a central screen yet that we can test our current info and 
 analysis on yet. 

 -  Still haven’t really tested anything yet with actual on field tests 
 -  Mitigation: 

 -  We need to get a central screen that meshes everything we have worked on to 
 begin doing real live tests. 

 Sprint 6: 

 -  Risks: 



 -  Current roboflow model that we implemented from last semester isn’t entirely 
 accurate, however it was tested on different angles and types of videos that aren’t 
 very similar to what we are going to test on. 

 -  Mitigation: 
 -  Implement a new roboflow model that is trained mainly if not completely on the 

 actual camera angle and general conditions that we will be using the app on, so a 
 side camera angle on a field with the ball being thrown in the air across the screen. 

 Sprint 7: 

 -  Risks: 
 -  The Roboflow annotations still need to be completed. This takes time, and a 

 new model can be built once finished. 
 -  The  Ultralytics plugin requires portrait orientation, while our application 

 requires landscape mode. This causes an error in the sizing and orientation of 
 the camera preview. 

 -  The Ultralytics plugin currently does not update the ball coordinates variable. 
 -  Mitigation: 

 -  Try to annotate the new roboflow model as quickly as possible, and try and fix the 
 orientation issues of Ultralytics forcing portrait, by potentially changing the rest of 
 the app to portrait orientation. Try and fix the issue of plugin not updating the 
 coordinates or not 

 Sprint 8: 

 -  Risks: 
 -  The Roboflow annotations are still being worked on 
 -  The Ultralytics plugin requires a TensorFlow Lite model for Android. 
 -  The Ultralytics plugin currently does not update the ball coordinates variable. 

 -  Mitigation: 
 -  Finish annotating the roboflow new model images, as well as try and implement 

 the new tensorflow Lite model for the ability to run our roboflow model on 
 android as well. 

 Sprint 9: 

 -  Risks: 
 -  The orientation fixes for IOS changed the Android orientation to be off now, 

 so we might need more platform specific orientation changes. 
 -  Further testing and enhancing of our current model 
 -  Further work and implementation of pitching box and detecting when a pitch 

 is being thrown and not just any ball in frame. 
 -  Mitigation: 

 -  Potentially fix platform specific orientation changes or switch to only one platform. 
 Allow the pitching box to have an arming system that will arm when ball is 
 detected for a certain amount of time within the pitching box. 



 Sprint 10: 

 -  Risks: 
 -  Our conversion of YOLO coordinates to standard image size is not 

 functioning. We need a new way of mapping our coordinates used in height 
 calculations. 

 -  Full functionality is present within individual components and need to be 
 integrated into the full system. 

 -  Mitigation: 
 -  Switch coordinate system and calculations to only one form of coordinates, 

 preferably just use the YOLO coordinate system for everything to standardize it. 
 Start working on full integration and test to make sure everything works together 
 well. 

 Sprint 11: 

 -  Risks: 
 -  YOLO red ball marker 

 -  When the Yolo model is executed using the iOS CoreML framework, 
 the ball’s x and y coordinates are automatically captured as values 
 between [0, 1]. Currently, the Ultralytics plugin converts these 
 coordinates back to pixels based on an assumed aspect ratio. 

 -  UI Fixes 
 -  Overflowing widgets 
 -  Instructions page is outdated 

 -  Illegal logic listener 
 -  When ‘tracking’ is triggered to True, listener must collect and analyze 

 the ball coordinates throughout the pitch until a max height is 
 reached. 

 -  Sound should be played with the max height found is out of bounds. 
 -  Mitigation: 

 -  We could pass the x and y values directly to our screen, which calculates 
 height, and then scale the ball’s position to fit our screen dimensions. 

 -  Update instructions page, try and fix overflow. 
 -  Implement the illegal sound audio to be played at the correct time. 

 Sprint 12: 

 -  Risks: 
 -  The presentation and design document are not yet complete. 
 -  Do the finishing touches to our project, specifically small UI changes and 

 making sure that the app runs smoothly and as accurately as possible. 
 -  Mitigation: 

 -  Finish up working on the presentation and design document as early as possible. 
 -  Fix and update the final touches on our project. 



 3.6 Personnel Effort Requirements 

 Team Member  Task Descriptions  Hours Worked 

 Sullivan Fair  YOLO Model development, Helped integrate 
 Ultralytics-Flutter plugin, Gathered pitching data, 
 Creating arming system for tracking, Refined Flutter 
 screens, Performed user testin and gathered feedback 

 129 

 Casey Gehling  Flutter screen development, C++/Flutter integration 
 research, codebase hygiene maintenance, field 
 research, video caching implementation, client 
 interaction/team interaction 

 107 

 Ethan Gruening  Prototype height calculation techniques, collect 
 pitching data and videos, continuously developed and 
 improved all Flutter screens (instructions, setup, 
 tracking), field test for development, conducted user 
 and model testing, weekly update presentations, and 
 developed team website. 

 170 

 Josh Hyde  Prototype object detection, research on different 
 models and potential solutions, testing videos, Flutter 
 screen work, illegal height lines, grid lines, android 
 implementation work, 

 124 

 Cameron Mesman  Flutter screen mock-ups, integrating C++ code into 
 flutter, integrating illegal pitch audio into flutter code, 
 field testing, unit testing 

 114 

 Andrew Vick  Prototype object detection code, translate python 
 scripts into C++, prototype detection and tracking code 
 running on iPhone, Integrate tracking code and object 
 detection 

 120 

 3.7 Other Resource Requirements 

 Developing a mobile application, our team already owns cell phones to test our Flutter applications 
 on iOS operating systems. The primary resources our team has and will continue utilizing are Iowa 
 State’s recreational softball fields. Field availability is crucial for the research and testing for proper 
 camera setup, object detection, and in-game functionality. Field reservations will be made as 
 needed for future testing. 



 4  Design 

 4.1 Design Context 

 4.1.1 Broader Context 

	Area	 	Description	 	Examples	
 Public health, 
 safety, and 
 welfare 

 Our project is a bystanding officiary to an 
 existing softball game, an environment 
 with a high risk for player injury. Our 
 design must be non-intrusive and not be in 
 the way of gameplay. There should be little 
 to no contact between the game activity 
 and our physical device to ensure public 
 safety. 

 Considering public safety, our setup 
 is a mobile device placed on a mount 
 along the fence. This ensures 
 minimal physical interaction 
 between the players and the device, 
 limiting additional risk for the 
 players. 

 Global, cultural, 
 and social 

 Slow-pitch softball is a variation of a 
 typical softball game for more novice 
 players. Local leagues and amateur 
 slow-pitch players are our target 
 communities and it is our mission to 
 ensure this device is catered to their 
 financial and accessible needs. 

 As engineers, our social and ethical 
 responsibility is to create a design to 
 accommodate local leagues. Our 
 design as a mobile application opens 
 our user base to all people with 
 smartphones. This addresses the 
 low-cost and portable solution that 
 local leagues would require. 

 Environmental  Since our project is very niche, there is 
 little to no environmental impact when 
 using our product. However, it is 
 important to recognize the environmental 
 impact of materials and power 
 consumption of the operating devices. 

 Our product can be downloaded onto 
 a user’s smartphone to limit 
 additional electrical components. 
 Additionally, a power supply for the 
 smartphone will need to be provided 
 and may require a battery charger for 
 prolonged extended use. 

 Economic  Catering to local slow-pitch leagues, we 
 must consider how our product will 
 impact the league's funds for both umpire 
 training and operation. 

 Our product will be affordable for all 
 users within a slow-pitch league 
 since it requires an existing 
 smartphone. A simple setup ensures 
 that there will be little time training 
 umpires to use the application or set 
 it up before a game. 

 4.1.2 Prior Work/Solutions 

 Include relevant background/literature review for the project (cite at least 3 references for literature 
 review in IEEE Format. See link: 
 https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf  ) 

 Beginning our discussions on our project design, we researched existing products and solutions for 
 cameras that can track balls within a sports setting. Analyzing the existing products, their user 
 reviews, and their targeted impact helped our team decide what approach would best suit our 
 project. 

https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf


 The first product we researched was the Specialized Imaging Tracker 2, a high-speed fast projectile 
 measurement camera. This camera has three-axis rotation for camera positioning and is 
 programmable for customization. Many users liked the full remote operation, multiple operating 
 modes, tight accuracy error margins, and no need for calibration. However, this is a research-grade 
 camera with a high cost and is very large. Considering our use case, local slow-pitch leagues would 
 appreciate a camera with small error bounds and little to no calibration. Additionally, it's essential 
 for our users to have an affordable and portable option for recreational use. The Specialized 
 Imaging Tracker 2 may be too advanced for the operating scenario and out of the price range for 
 local leagues. 

 A similar product used in professional sports games is the Veo 3 Sports Cam. This is a 360-degree 
 camera that not only tracks sports balls but also tracks players, displays heat maps, match stats, and 

 tags game actions. This device is known for its object detection accuracy and 
 long battery life. Users can also live stream their sports games through this 
 camera. These features would benefit local softball leagues, though they are 
 not needed for operating as a slow-pitch officiary. The downside to this 
 product is it costs $2,400 and requires a subscription to operate. Used in a 
 professional sense, the Veo 3 Sports Cam is a successful product. Its features 
 may not be needed for the primary operations of a slow-pitch officiary tool; 
 however, the high standard for preserving the integrity of the game with an 
 accurate system gives users the confidence to use the product in game settings. 

 The Pocket Radar Smart Coach is another product specializing in ball 
 detection in a softball setting. This 

 product is a small device, about the size of a smartphone, 
 and records a clip of a softball pitch and its speed. The 
 device is compatible with a mobile app that saves the video 
 and speed of pitches. With a strong user interface, there are 
 many positive user reviews. Users typically buy this product 
 for the connection to their mobile device, the ability to share 
 and review their pitches, and a cost-effective solution with a 
 portable design. The Pocket Radar targets users who 
 recreationally play and practice softball and baseball. Their 
 isolation of extra sensors and cameras into a handheld 
 device makes it accessible. A drawback to creating a small device is there is low battery life that 
 limits users to a small usage time. The lower-quality camera has a more significant error bound 
 than professional cameras, with a 1 mph error. Although this device has a small battery life and a 
 more significant error bound, it is more tailored for local and recreational users, receiving positive 
 feedback for their specific use cases. 

 4.1.3 Technical Complexity 

 Our slow-pitch softball application has several components that integrate together mathematical, 
 engineering, and social challenges. Our engineering challenges can be split into two main modules: 
 the frontend user experience and the height detection. The project's technical complexity would be 
 a large project to design, prototype, and test. Considering this needs to be developed to be 



 affordable and portable for local leagues, this increases the complexity as more readily available 
 technologies should be used for a wider user base with lower costs. 

 The height detection component of the project will require using a camera feed and 
 machine-learning object detection techniques and existing libraries in tandem. Additionally, object 
 detection alone will not be enough to determine height; a technique must be found to coordinate 
 the ball’s location to a specific height through geometric calculations or calibrated values. With the 
 limited existing products, our team must find our own solution to determining height using 
 engineering principles and practices. Once accomplished, there can be further development to 
 increase the fps or computation time for frame analysis. As an open-ended component of the 
 project, the technical design, prototyping, and testing is a true example of an engineering problem 
 within the real world. 

 The height detection backend component is the application’s “computational brain.” Gathering 
 calibration information, collecting camera frames, and setting maximum and minimum heights will 
 need to be incorporated into the system’s frontend display. A user would interact with the program 
 in several ways to start, end, and view the officiary logs. It is essential to develop an accessible and 
 guiding frontend for umpires and players to experience a seamless setup and collection process. The 
 compatibility of the frontend and the backend is also very important. This module is a technically 
 advanced project, not only developing a user interface but also stitching it with the backend’s 
 operations and reporting its output. 

 In total, the technical components of this project provide complex engineering problems that 
 match the industry standards as a real-world software project. 

 4.2 Design Exploration 

 4.2.1 Design Decisions 

 A primary design decision was what system we would use for the camera collection and user 
 interface. This decision will define what our users will need to purchase, calibrate, and gain 
 familiarity with when running our application. From a technical standpoint, using multiple cameras 
 would gain more data points to pinpoint the exact height of the ball. However, developing this 
 product specifically for the ease and affordability of local slow-pitch leagues, we decided to 
 implement this application on a singular mobile device. This design decision increases the project's 
 technical complexity but better suits our user base. The application was chosen to be developed 
 using Google’s app development platform, Flutter, which can be compiled to run on both Android 
 and iOS, however our development is only focussed and works with IOS. Allowing anyone with a 
 mobile device to install our application invites many users to interact with the widget-based 
 accessible program for IOS. This was our most critical design decision, led by our social and ethical 
 responsibility and our user needs. 

 Another design decision was the technologies to use in the object detection of the softball within 
 the camera frame. This decision was based on the compatibility with Flutter, the speed of the 
 library’s methods, and the accuracy. After careful consideration and research, we decided to utilize 
 the Ultralytics Flutter plugin, which allows us to efficiently run a custom-trained YOLO model for 
 object detection.  The plugin provided the best  performance compared to  hybrid solutions.  Using 
 a custom YOLO model for our object detection allows us to have complete control over how we 



 want to refine the machine learning algorithm to best track softballs in out application.  The plugin 
 also offers an easy easy to switch which model we are running, allowing us to test models more 
 efficiently.  Overall, this decision balances performance with freedom of development, which 
 complements the flexibility of our implementation. 

 The final major design decision was the height calculation technique used to take in the position of 
 a softball within a camera frame and output a specific height. After researching, the vertical pixel 
 distance is constant and can be converted to feet when calibrated with known heights and a horizon 
 line (the line from the home plate to the pitcher’s mound). This was found by placing a camera 
 equidistant from the home plate and the pitcher’s mound, selecting where both are located within 
 the frame and where a known height exists along the horizon line. The image below shows the 
 equal segments representing 2ft. 

 We now have a technique to analyze the (x,y) of the softball and determine if it lies within the 
 maximum and minimum height bounds set by the user. 

 4.2.2 Ideation 

 The design decision we struggled with the most was finding and deciding on the height detection 
 technique. As mentioned in section 4.2.1, we finalized the decision for finding the corresponding 
 ground line below the pitch from home plate to pitcher's mound and identifying a known height to 
 get the vertical pixel-to-feet ratio and turn the detected softball’s (x,y) coordinates into a height 
 value. There were other prototyped and researched height calculation techniques that we 
 considered for the final design: 

 ●  Multi-Camera Detection 
 ○  Set up three cameras in different locations throughout the field. 
 ○  Run the object detection on all the cameras and determine the ball's distance from 

 each camera with the camera’s detected radius. 
 ○  You can use each camera’s height to triangulate the exact location of the ball, 

 including height. 
 ○  This violates our design choice for a single camera. 

 ●  Machine Learning 
 ○  Given a machine learning model the distance to the softball, calculated by the pixel 

 radius of the detected softball, and the (x,y) coordinates, a machine learning model 
 will guess the height. 



 ○  After many iterations of training the model, we found it inconsistent and widely 
 inaccurate. 

 ○  The search for a geometric calculation technique was needed for fast and accurate 
 return values. 

 ●  Known Radius Geometry 
 ○  With the assumption that the radius stays constant for all softballs, we can use the 

 number of pixels of the detected softball to find its distance from the camera 
 ○  Given its (x,y) coordinates, we can determine the angle from the camera and use 

 ●  Pitching Line Calibration 
 ○  The home plate and pitcher’s mound are identified within the camera frame 
 ○  The pixel-to-distance ratio can be calculated with the known distance between the 

 bases. 
 ○  The pixel-to-distance ratio was inaccurate as the vertical ratio of pixels differs from 

 the horizontal ratio. 
 ○  The ratio found in this method will only determine horizontal distances, not 

 vertical heights. 
 ○  The search for a vertical distance conversion is needed to find the height of a given 

 (x,y) point. 
 ●  Known Heights Calibration 

 ○  The home plate, pitcher’s mound, and known heights are identified within the 
 camera frame 

 ○  The vertical pixel-to-distance ratio can be calculated from the home plate to the 
 pitcher’s mound line and known height’s lines. 

 ○  The height can be calculated given the (x,y), getting the number of pixels from the 
 pitching line, and translating it into feet. 

 ○  Used in the final design. 

 4.2.3 Decision-Making and Trade-Off 

 Design Option  User Compatibility  Observed 
 Accuracy/Performance 

 Mathematically 
 Supported 

 Multi-Camera 
 Detection 

 3/10 
 It would require users 
 to place and have 
 access to multiple 
 cameras running the 
 application 

 9/10 
 Research shows this 
 method is fairly 
 accurate in 
 triangulating a point, 
 but the camera 
 connection will delay 
 the computation. 

 10/10 
 Triangulation is a 
 technique used in 
 satellites for GPS 
 tracking for its 
 accuracy. 

 Machine Learning  10/10 
 No setup would be 
 needed as the 
 machine learning 
 model will handle the 
 field differences. 

 4/10 
 The machine learning 
 algorithm struggled to 
 accurately depict 
 heights when the 
 camera was moved into 
 a new environment. 

 5/10 
 Machine learning is 
 the analysis of data 
 trends, not a direct 
 hard-coded 
 mathematical 
 relation between ball 



 position and height. 

 Known Radius 
 Geometry 

 9/10 
 The height of the 
 camera would need to 
 be inputted by the 
 user. 

 3/10 
 The radius of the ball 
 becomes very small 
 when the camera is 
 placed far away, so the 
 exact distance jumps 
 when the radius 
 increases by one pixel. 

 4/10 
 The angle of the ball 
 to the camera based 
 on its position in the 
 frame varies from 
 camera to camera. 

 Pitching Line 
 Calibration 

 7/10 
 You would have to 
 select 2 points on the 
 camera feed as a part 
 of the setup. 

 8/10 
 The observed height 
 looked fairly accurate 
 when measuring a few 
 trials in person, but 
 reading larger heights 
 prompted larger errors 

 7/10 
 The horizontal 
 pixel-to-distance 
 conversion ratio is 
 similar to vertical, 
 but not quite the 
 same. 

 Known Heights 
 Calibration 

 6/10 
 You would have to 
 select 4 points on the 
 camera feed as a part 
 of the setup. 

 9/10 

 The observed 
 calculated heights 
 seemed accurate, and 
 the vertical distance 
 distribution of pixels 
 was visually equivalent. 

 9/10 
 The vertical known 
 heights are 
 equidistant when 
 viewed and can be 
 used to calculate a 
 strong vertical 
 pixel-to-distance 
 ratio 

 OpenCV  3/10 
 Very slow and isn’t 
 very practical for an 
 app that uses opencv 
 to be usable for most 
 users. 

 5/10 
 Could detect the balle 
 quite accurately, but 
 only up close. Not as 
 practical for an app to 
 use 

 7/10 
 Realistically, opencv 
 is quite 
 mathematically 
 supported, it uses 
 well-know strategies 
 to be able to detect 
 things 

 Ultralytics YOLO  7/10 
 Easy to integrate into 
 mobile apps, but takes 
 a while to integrate 
 with roboflow pytorch 
 files. 

 9/10 
 Real-time object 
 detection is accurate 
 and consistent across 
 varied environments 
 with good lighting. 

 8/10 
 Uses convolutional 
 neural networks, 
 which are 
 mathematically 
 grounded but 
 abstract 

 We chose the known heights calibration because of the mathematical accuracy it provides. The 
 observed height still needs to be rigorously tested but has the most significant potential of the 
 options. The multi-camera detection option was not considered because it did not align with our 
 cost-effective user needs and requirements for fast computations. 



 4.3  Proposed Design 

 4.3.1 Overview 

 Starting with the Flutter app on a mobile device, users will have access to set up calibration values 
 (min height, max height, and reference height) for the camera to fit their specific environment. 
 When they enter the tracking screen, our app will utilize the Ultralytics-Flutter plugin to access 
 their device’s camera and begin feeding it into our YOLO model.  With the plugin, we are able to 
 execute the model in the Flutter environment.  The YOLO model will track the ball based on a 
 custom dataset that we created.  The model will then return the coordinates of the ball which we 
 can then use to calculate the height using our pixel conversions.  In addition, we do not want our 
 model to be tracking the height of the ball all the time as that would result in illegal calls being 
 made when the ball is in play.  So, we also developed an ‘arming’ system that involves drawing a 
 bounding box around the pitcher’s mound.  When the ball is found in that box for two seconds, our 
 tracking algorithm triggers and the app begins checking for an illegal pitch. 

 4.3.2 Detailed Design and Visual(s) 

 Calibration: 

 ●  Use YOLOv8 model to track the ball and collect the coordinates of the home plate, a 
 reference height, and the pitchers mound. 

 ● 

 Calculate Height: 

 ●  Use YOLOv8 model to track the ball and collect the coordinates when pitched 

 ● 

 System Arming: 

 ●  Map the Pitcher’s Bounding Box 



 ○ 
 ●  Box Status Indicators (Red, Yellow, Green) 

 ○ 

 . 



 4.3.3 Functionality 

 4.3.4 Areas of Concern and Development 

 Currently, we have a complete implementation of our app.  Users are able to specify the known 
 height in the app, and through our calibration process, are able to use the app to track the height of 
 a softball.  However, the main area of concern for our application is the robustness and accuracy of 
 our machine learning model.  In the model’s current state, it is not sufficiently trained on all of the 
 various lighting conditions that may be present during a softball game.  To mitigate this issue, the 
 model can be trained further on datasets with more lighting variety to increase the overall accuracy. 
 In addition, we have been experimenting with different versions of YOLO models, mainly YOLOv8 



 and 11.  We need to be able to find the model that provides the best combination of accuracy and 
 performance, which is the end goal of making it best for our users. 

 4.4 Technology Considerations 
 Our project consists of multiple components that help integrate the two main components of our 
 design: object detection and mobile app development. We use Google’s app development tool 
 Flutter, which can be compiled to run on an Apple iPhone, Android mobile device, or mobile 
 emulators. However, due to compatibility issues with the Ultralytics plugin, we have prioritized the 
 IOS platform for our application.  Flutter uses Dart for an accessible widget-based design. Flutter’s 
 plugin functionality allows a smoother cross-platform development when utilizing device 
 components such as the camera. Using Flutter, we can satisfy our technical challenges of developing 
 an aesthetically pleasing and accessible user interface with an Ultralytics backend. 

 Integrating into Flutter’s backend, we use the Ultralytics-Flutter plugin to track the softball in the 
 camera frame via machine learning. There exist many sports ball tracking systems currently on the 
 market. However, these systems typically guarantee accuracy with a multi-camera setup with 
 expensive, high-quality cameras. Our design accommodates local league use with a camera on a 
 mobile device. With a singular camera on the field providing one plane of vision, our application’s 
 accuracy relies on precisely detecting the softball within a camera frame. We do this using a custom 
 trained YOLO model, which detects an object using machine learning. With our machine learning 
 approach, we can use known heights provided during calibration to calculate the height using the 
 ball coordinates returned from the YOLO model. 

 4.5 Design Analysis 

 Using our machine learning based design, we have been able to fully integrate our object detection 
 and height calculation methods into our app.  The Ultralytics plugin allowed for a seamless 
 integration of our YOLO model into our Flutter environment.  Currently, our app is able to create 
 the pixel conversions we need to calculate height using provided known height values, our YOLO 
 model then tracks the ball and returns the coordinates where it was found, and we use those 
 coordinates in our height calculation to return the height of the ball.  With this design, we have 
 confirmed that it is possible to determine the height of the ball using a single camera. 

 From here, further refinements of our machine learning model are needed to account for the 
 various conditions that can be present during a softball game.  Currently, our model provides 
 accurate results under ideal conditions, but we want to ensure that our users can utilize our app 
 under all conditions.  Specifically, our model occasionally detects objects that are not softballs, 
 meaning that the model is either overtrained, or is not trained well enough.  Through model 
 refinements and further training, we expect that our app can be completely functional under all 
 conditions.  We also need to ensure the efficiency of our app.  The YOLO model does require 
 reasonable computation power, which has revealed issues when doing things like screen recording 
 the phone while running our app, which often results in crashing.  While this is a specific scenario, 
 we aim to take these issues into account so our app can run as expected without reduce the 
 performance of other aspects of the device. 



 5  Testing 

 5.1 Unit Testing 

 Our solution is primarily software based; this implies the necessity for proper unit testing for each 
 separate piece of functionality within our code. Because our main solution functionality is divided 
 among two separate technical areas, the Flutter frontend and our tracking backend, unit testing is 
 treated differently between the two implementations. 

 Within our frontend, unit testing occurs with each individual “widget”, or visual component of our 
 user interface to ensure items appear correctly on screen from our mobile application. This testing 
 ensures that the user experience of our app remains consistent and that there is a high ease of 
 access for users. It also ensures that data is properly being accessed within our application between 
 components to ensure accuracy. In terms of the tools used for unit testing within our frontend, 
 Flutter comes bundled with real-time debugging tools, useful for diagnosing and troubleshooting 
 problems that occur when running an app. These tools can be accessed via a locally hosted interface 
 accessible upon starting the Flutter app. 

 For testing the backend, we focused on the performance of our machine learning model.  To test 
 this we started by reserving sections of our prepared dataset for testing and validation.  When the 
 model goes under training, it takes a subset of the training frames from our dataset, trains on those 
 frames, then runs the model against a subset of validation frames. This process was completed over 
 a series of 400 epochs.  Once the model was done training, we ran it against the testing frames to 
 verify its performance.  Further testing was done once the model was integrated into our app. 
 Initially, we added a shortcut to the model within our app that bypassed the calibration section. 
 From there, we were able to run the model directly to verify that it was able to function within our 
 app. 

 5.2 Interface Testing 

 The interfaces included in our design include the user interface built within Flutter along with the 
 communication between the Ultralytics-Flutter plugin and the Flutter side.  The graphical user 
 interface was testing by running our app and ensuring that all of the widgets were behaving as 
 expected.  We also verified that certain function calls were being entered by adding print 
 statements within the functions that were displayed via the Flutter debugging output.  For the 
 Ultralytics plugin, we were able to directly integrate the plugin within our app, so no external 
 communication was necessary.  The Ultralytics plugin was verified for correctness with the 
 aforementioned model shortcut, along with print statements being added where necessary.  As 
 there was no external communication between Flutter and the plugin, just being able to run the 
 model showed that our interfaces were behaving properly. 

 5.3  Integration Testing 

 The main focus of our integration testing was ensuring that we were able to use our model after 
 performing the calibration.  To verify this, we first displayed the calibration values after setup via 
 the debugging output. This confirmed that our initial values were being initialized correctly.  After 
 calibration, the app moves to the actual tracking screen which utilizes the Ultralytics plugin.  We 
 then printed out the setup values in that screen to confirm that the calibration values were being 
 passed to the tracking screen properly.  Next, we ensured that the model itself ran properly after 
 moving to the tracking screen by displaying a red dot if it detected the ball.  With these steps, we 



 were able to ensure that the integration between Flutter and our machine learning model behaved 
 as expected. 

 5.4  System Testing 

 We performed system testing by using our app in a realistic environment.  To achieve this, we went 
 out to the recreational softball fields, where we mounted a phone on a tripod and ran our app. 
 From there, we verified that our app functioned normally.  In addition to Flutter’s reloading 
 capabilities, we were able to make small corrections to the code where needed and reload our app 
 while it was running to verify correctness.  Based on the results we gathered from each testing 
 session on the field, we were able to make modifications to our code to mitigate issues that arose 
 during testing.  After fixing any issues, we went back out to the field to test further. 

 During testing, we also verified our height calculation algorithm by holding the ball at a known 
 height.  With the known height, we could observe the height that the model returned and verify 
 that what the model returned was correct.  As we stored and displayed the setup values that are 
 used in our height calculation, we were able to easily make adjustments based on what the model 
 was outputting. 

 5.5  Regression Testing 

 The main focus of our regression testing was based on changes we made to our machine learning 
 model.  As Flutter is modular by design with the widget-based implementation, it was easy to make 
 changes to the Flutter side without changing large sections of code.  For the machine learning 
 model, the Ultralytics plugin made it easy to specify what model we wanted to use.  So, as we made 
 further refinements to our model, we were able to easily plug-in the new model and verify its 
 correctness by testing our app on the field. 

 5.6  Acceptance Testing 

 To verify the correctness of our system, we based it on our design requirements.  With our 
 requirements, we could easily tell if our app was providing accurate results.  Specifically, we wanted 
 our app to be easy to set up as well as the illegal call being faster than a normal umpire with an 
 height accuracy being within ±4 inches. 

 To ensure this, we have members of the ISU softball team use our app to see how easy the setup and 
 use of our app would be for someone who has never used it.  This ensured that we had an unbiased 
 opinion of our app along with accounting for any potential user errors that we missed. Finally, we 
 were able to verify our height calculation by holding the ball at a known height. 

 5.7  Results 

 Based on our testing, our app functions very well based on our requirements.  Our app is able to 
 detect the height of the ball in a ±6 inches, which is not within our desired range; however, future 
 refinements of our machine learning model would likely move the detected height within our 
 desired range.  Next, our app was able to detect and call an illegal pitch in .22 seconds, which is just 
 above our desired goal of .2 seconds.  Finally, for ease of use and setup, the ISU club softball 
 members stated that the setup of our app was simple, and that they would trust a system like this to 
 be used during actual softball games. 



 While our end metrics don’t quite meet our previously set goals, we believe that with further 
 training of our machine learning model, the performance of our app should fall within our desired 
 goals.  In the end, we feel that we created a successful implementation of the desired product. 

 6  Implementation 
 Object Detection: 

 For our final deliverable we settled on utilizing only a YOLO model for object detection. We were 
 able to solely rely on the model because we were able to integrate the Ultralytics Flutter plugin into 
 our app which allowed us to utilize the iPhone CoreML hardware. By taking advantage of the 
 phone’s dedicated hardware for ML tasks, model inference speeds were quick enough to rely on it 
 for tracking and detection. 

 Pitch Detection: 

 As mentioned in 4.3.2, we first detect when a pitch is thrown before deducing if a pitch is illegal. We 
 do this by creating a bounding box around the pitcher’s mound and triggering our tracking only 
 when a ball is thrown after the pitcher is holding the ball within the bounding box for 2 seconds. 
 Additional logic for our pitch detection and system arming can be found in section 4.3.2. 

 Height Detection: 

 As mentioned in 4.3.2, we implemented our height calculation to use the coordinates of the ball, 
 home plate, and a known reference height, using coordinates from the YOLO model, to convert 
 pixel height to a height in feet. 

 We observed in the image below, that when we horizontally align the pitcher’s mound and the 
 home plate within a camera frame, that the vertical pixel-to-feet ratio is constant. Each green line 
 represents a reference height, measured on both the pitcher’s mound and home plate, and 
 connected by the green line. The distance between each line is one foot, and the pixels between 
 lines remain constant for each new height. 

 Using this knowledge, we can calculate the average pixel length from the known reference height 
 and the home plate, calculate the pixel height of the ball, and convert the pixel height to a height in 
 feet. When the maximum height of the pitch is found, we can then determine if the pitch is illegal 
 using the maximum and minimum height values. 



 Screen Development: 

 Our application contains multiple screens that flow from an initial application landing page to the 
 main camera screen as pictured below. These screens include: 

 -  Landing Screen  : acts as an initial screen which is presented to the user. This is the root of 
 the application and is where the user starts navigation. 

 -  Instructions Screen:  instructs the user on the method of calibration that is essential for 
 our applications functionality. This screen includes information as well a guided visuals on 
 how to properly calibrate our application on the following screen. 

 -  Setup Values Screen  : the user inputs a reference height (usually the height of a player or a 
 known-length object) as well as maximum and minimum ball thresholds. 

 -  Calibration Screen  : a series of timed camera screens that are used to obtain ball 
 coordinates as well as reference height points for height calculation. 

 -  Camera Screen  : displays the currently tracked softball as well as other information 
 essential for an end user to discern the height-tracking capabilities of our application. 

 The implementations of these screens as well as visual references to them can be viewed under 
 appendix one below. 





 7  Ethics and Professional Responsibility 

 7.1  Areas of Professional Responsibility/Codes of Ethics 

 Area of 
 Responsibility 

 Definition  IEEE Item  Team Interaction 

 Work Competence  Perform professional, 
 high-quality work 

 “To seek, accept, and 
 offer honest criticism 
 of technical work, to 
 acknowledge and 
 correct errors…” 

 The team focused on 
 this area by 
 developing solutions 
 and experimenting 
 with modern 
 technologies to ensure 
 we create the best 
 solution. 

 Financial 
 Responsibility 

 Deliver reliable 
 products that are 
 reasonably priced 

 “To be honest and 
 realistic in stating 
 claims or estimates 
 based on available 
 data…” 

 Our design choices 
 are based on usability, 
 such as having the 
 app be free and not 
 requiring an 
 additional camera, 
 which upholds this 
 area. 

 Communication 
 Honesty 

 Report truthful work 
 to shareholders 

 “To be honest and 
 realistic in stating 
 claims or estimates 
 based on available 
 data…” 

 We have upheld this 
 area by meeting 
 weekly with the client 
 and frequently 
 communicating our 
 progress and design 
 choices. 

 Health, Safety, 
 Well-Being 

 Minimize 
 shareholders’ health 
 and safety risks 

 “To hold paramount 
 the safety, health, and 
 welfare of the 
 public…” 

 The team wanted to 
 minimize injury risk 
 during the setup of 
 our product, which 
 helped lead us to our 
 app-based solution, 
 which eliminated the 
 need to set up 
 multiple cameras. 

 Property Ownership  Respect the property 
 of others 

 “To credit properly 
 the contributions of 
 others…” 

 We followed this area 
 by acknowledging the 
 individual 
 contributions of the 
 team and by 
 collaborating on 
 different areas of the 
 project so multiple 



 members could gain 
 knowledge in multiple 
 areas. 

 Sustainability  Protect environmental 
 and natural resources 

 “To strive to comply 
 with ethical design 
 and sustainable 
 development 
 practices…” 

 We focused on this 
 area by making our 
 app cross-compatible 
 and usable on 
 multiple iterations of 
 phones, meaning our 
 users will not need to 
 continue to purchase 
 new devices to use 
 our product. 

 Social Responsibility  Make products that 
 benefit society 

 “To improve the 
 understanding by 
 individuals and 
 society…” 

 Our team has a 
 responsibility to 
 produce accurate data 
 and to better the 
 experience of rec 
 league slowpitch 
 softball players and 
 umpires, so we 
 focused on making 
 our solution easy to 
 use and available to 
 slowpitch leagues. 

 Best Area of Responsibility; Social Responsibility: 

 We have chosen to approach this standard by designing our project to prioritize affordability, 
 portability, and easy accessibility for local communities to have access to simple officiating 
 assistance.  Although this further complicates our software tracking model, it simplifies the 
 application for the community. This decision in our development was ethically driven with the 
 community in mind rather than solely for efficient development. 

 Worst Area of Responsibility; Sustainability: 

 We haven’t been prioritizing the efficiency and runtime of our code up to this point as we’re trying 
 to get prototypes working, which could result in more power consumption and more contribution 
 to negative environmental impacts.  Our team plans on working to not only write code but to refine 
 it to be as efficient as possible.  Thus reducing the amount of power needed to run our app. 



 7.2 Four Principles 

 Beneficence  Nonmaleficence  Respect for 
 Autonomy 

 Justice 

 Public health, 
 safety, and 

 welfare 

 Our product 
 aims to improve 
 the state of rec 
 league softball 
 games, which 
 benefits the 
 enjoyment of 
 everyone 
 involved. 

 We are avoiding 
 using multiple 
 cameras which 
 reduces risk 
 during setup and 
 improves the 
 usability of our 
 product. 

 We allow users to 
 store past pitches, 
 so they can make 
 their own decisions 
 based on 
 non-subjective 
 data, improving 
 the enjoyment of 
 the game. 

 Our app will 
 provide 
 unbiased, real 
 data to help 
 officiate games, 
 which will 
 improve the 
 fairness of the 
 game. 

 Global, 
 cultural, and 

 social 

 Promotes fair 
 play by providing 
 an objective tool 
 for measuring 
 pitch height, 
 which will 
 reduce 
 arguments 
 between players 
 and officials. 

 Keeping our 
 solution focused 
 on a single 
 device allows a 
 normal game of 
 softball to play 
 normally without 
 disrupting the 
 existing league 
 culture. 

 Since the height 
 range of our app 
 will be 
 customizable, 
 different cultures 
 and leagues can set 
 up the app to work 
 for their needs. 

 The height range 
 customization of 
 our app will 
 allow multiple 
 leagues with 
 different rules to 
 improve the 
 equality of how 
 the game is 
 called. 

 Environmental  Focusing on 
 developing our 
 project on a 
 phone reduces 
 the need for 
 multiple tracking 
 cameras 
 benefitting the 
 environmental 
 impact. 

 Avoiding 
 multiple cameras 
 allows our users 
 to use an existing 
 phone instead of 
 having to pay 
 and ship a new 
 camera. 

 Our product allows 
 users to choose to 
 use their existing 
 phone instead of 
 making more 
 environmental 
 impacts by paying 
 for more cameras. 

 Our app will be 
 able to be 
 utilizied by all 
 leagues, even 
 ones with limited 
 resources.  This 
 keeps them form 
 needing to invest 
 in other cameras 
 that may 
 contribute to 
 environmental 
 damage. 

 Economic  Our solution is 
 free which 
 eliminates the 
 need to purchase 
 expensive 
 tracking 
 equipment. 

 Using one device 
 to perform all of 
 the tracking 
 helps us keep the 
 app free because 
 we can forgo the 
 cost of an 
 additional 
 camera. 

 A league can make 
 their own choices 
 on whether or not 
 to use our app or 
 not, which gives 
 them control over 
 any economicals 
 adjustments it my 
 require such as a 
 league phone to 
 use the app. 

 The free price 
 point of our app 
 allows a wide 
 range of leagues 
 with different 
 financial 
 backgrounds can 
 utilize our app to 
 improve the 
 league. 



 Area We Focused On; Public health, safety, and welfare X Beneficence: 

 We are aiming to improve the enjoyment of the game.  We plan to achieve this by ensuring simple 
 setup for umpires, returning accurate data so the right calls are constantly being made, and being 
 configurable for different height ranges so it can be used by a variety of leagues. 

 Area of Improvement; Environmental X Respect For Autonomy: 

 Based on the result of further testing, we may end up needing to restrict our app to only work on 
 phones with a certain camera quality.  Older phones with worse may not be able to provide the data 
 needed for accurate tracking.  This could result in leagues without immediate access to a high 
 quality phone having to purchase a new device through shipping methods that contribute to 
 environmental damage. 

 We plan on overcoming this negative aspect by ensuring our app can run on phones that are widely 
 available and already owned by a majority of people. This will keep the availability of our app high 
 and will reduce the need to purchase a new device. 

 7.3 Virtues 

 ●  Accuracy 
 ○  We strive to provide accuracy for our users, as it is important for illegal pitches to 

 be called correctly so as to not cause distress between players, officials, and fans. 
 ○  We will achieve this virtue by continuously refine our ball tracking code and 

 provide easy-to-use calibration steps so our app can be calibrated to fit the needs of 
 each field. 

 ●  Empathy 
 ○  Our app is solely focused on bettering the game for players, officials, and fans.  We 

 want to ensure that we are always prioritizing their needs over what makes it easier 
 for us. 

 ○  Communicating our design choices with our client and collecting feedback from 
 testing are how we will ensure that we are always taking user needs into account. 

 ●  Innovation 
 ○  We want our product to be easily integrating into existing leagues.  So, we are 

 innovating a single camera design approach that will make it easy to set up without 
 the needs for multiple cameras. 

 ○  Constant prototyping and research into different tracking methods will help keep 
 us engaged with new ideas and strategies as to how to improve our single camera 
 solution.  Current team innovation like or height line system are already helping us 
 improve our height detection methods. 

 Each team member should also answer the following: 

 ●  Identify one virtue you have demonstrated in your senior design work thus far? (Individual) 
 o  Why is it important to you? 
 o  How have you demonstrated it? 

 ●  Identify one virtue that is important to you that you have not demonstrated in your senior 
 design work thus far? (Individual) 

 o  Why is it important to you? 



 o  What might you do to demonstrate that virtue? 

 ●  Andrew 
 o  Demonstrated Virtue: Open-mindedness 

 ▪  Throughout the project, I consistently researched new and more effective 

 ways for our team to track softball. As our project constraints evolved, I 
 adapted my approach to object detection accordingly. For example, after 
 spending time developing a solution using OpenCV, I discovered the 
 Ultralytics plugin, which allowed us to run a YOLO model on the phone 
 with fast enough performance to handle both detection and tracking. Even 
 though this made much of my earlier work obsolete, I was willing to pivot 
 and focus on learning how to integrate the new approach because it was 
 ultimately better for the team and the project. 

 ▪  This virtue matters to me because in software engineering, nothing stays 

 static, tools, requirements, and best practices change constantly. Being 
 open to new ideas, even when it means moving on from something you’ve 
 already invested in, is critical for building the best possible solution. 

 o  Non-Demonstrated Virtue: Communication 

 ▪  Communication was one virtue that I find very important even though I 

 may have not been the best at it during this project. I often got deep in the 
 weeds of researching and experimenting with different object detection 
 technologies but ended up failing to fully communicate what I was doing 
 and why. Communication is important to me because no matter how good 
 the technical solution is, it doesn't matter if the rest of the team doesn't 
 understand it or can’t efficiently work with it or integrate it with the rest of 
 the application. 

 ▪  Moving forward, I plan to be more intentional about communicating 

 decisions, updates and reasoning behind changes, by summarizing key 
 shifts in meetings and documenting decisions in shared notes. 

 ●  Casey 
 o  Demonstrated Virtue: Persistence 

 ▪  I have primarily been able to aid in code refactorization, UI revamping, 

 and testing this past semester. I feel that my contributions aided in the 
 success of our project despite various roadblocks that may have occurred 
 along the way. 

 ▪  This virtue is important to me as being able to balance project needs with 

 other work, study, or personal needs is critical to the success of a project. 

 o  Non-Demonstrated Virtue: Communication 

 ▪  I feel that this semester my communication wasn’t as effective as it has 

 been in the past. There were times with work, studies, and other 



 circumstances that caused me to regrettably fall behind on some 
 important decisions; this caused miscommunication and error in my work 
 when certain features were being worked on in parallel, for example 
 causing certain feature changes to become obsolete in the face of new 
 features being pushed out. 

 ▪  Ultimately, this was a learning experience for me, and I am confident in 

 our final product and my ability to communicate effectively in the future. I 
 will continue to work on asserting myself in team spaces to ensure my 
 progress aligns with others. 

 ●  Sully 

 o  Demonstrated Virtue: Persistence 

 ▪  With any project, there are bound to be roadblocks that come up that 

 prevent progress.  I believe it is essential that I am persistent in attacking 
 these roadblocks and continuing to experiment so that we can solve our 
 problems. 

 ▪  I demonstrated this virtue by continuing to attempt to integrate our C++ 

 code into the Flutter app.  There have been many issues with the 
 integration, mainly stemming from the OpenCV libraries having issues 
 running on iOS, and I need to persist through this issue so we can 
 complete our app.  While I haven’t been able to fully integrate the code yet, 
 I have made good progress through the OpenCV tracking framework for 
 iOS I helped create. 

 o  Non-Demonstrated Virtue: Adaptability 

 ▪  We are utilizing many different technologies in the making of our app.  So, 

 it is important that I become familiar with the all of the technologies we 
 are using, so I now how all of the components work together in detail. 

 ▪  I will demonstrate this virtue by pairing with other team members who are 

 working on different areas and learning how they developed their ideas so 
 I can help with issues in the future. 

 ●  Cameron 

 o  Versatility 

 ▪  This project has brought me outside of my comfort zone numerous times 

 and required me to do things I have no experience with. Learning flutter 
 and all of the ML topics was new to me and forced me to go outside my 
 current knowledge to complete the tasks. 



 ▪  This is important to me because it is a necessity in the workforce. New 

 technologies are constantly popping up, so a good engineer must be able 
 to adapt to these new technologies and learn how to best use them. 

 o  Communication 

 ▪  I felt like this semester, I wasn’t always communicating well with my team 

 and that hurt my work. With better communication I would be able to 
 work through issues quicker and help the engineering process as whole. 

 ▪  Hopefully, I’ll be able to attend the weekly meetings next semester which 

 will help immensely. Other than that, I just need to be more willing to 
 reach out to my teammates for help and to keep them updated on my 
 progress. 

 ●  Ethan 

 o  Demonstrated Virtue: Diligence 

 ▪  Throughout working on this senior project I felt I showed the virtue of 

 diligence by persistently achieving weekly goals. I did this by making 
 weekly update presentations for our advisory and team to outline our 
 contributions for the week, the current integration of our components, 
 and the steps we must take to move forward. Diligently staying updated 
 with my team and planning for the future was my strongest virtue I 
 showed in this project. 

 o  Non-Demonstrated Virtue: Conviction 

 ▪  During many of the project’s life cycle there were times where I believe 

 something wasn’t working effectively or there was an issue with the team’s 
 development cycle. However, many times I did speak up to these issues. 
 My actions and communication between the group occasionally did not 
 align with my beliefs and I should have spoken up about issues within our 
 project and showed conviction to stand up for what I believe was right. I 
 will work on speaking up in groups and being direct in my thoughts of 
 situations that arise during development cycles. 

 ●  Josh 

 o  Demonstrated Virtue: Creativity 

 ▪  One virtue I feel like I demonstrated pretty well during this project for the 

 most part was creativity, and coming up with different and unique 



 solutions to some of our problems we were having within the group. We 
 had quite a few problems and issues as a group, on top of just individually, 
 but I felt like I did a good job at thinking of creative ways to come up with 
 a solution to our project and different small problems. 

 ●  Non-Demonstrated Virtue: Persistence 

 ▪  One thing I struggled with personally on this project was finding the 

 strength and strategies to push past some of my or our team's struggles. I 
 obviously tried my best to get past some of these struggles, but I still felt 
 like I was stuck on a wall at some parts of the project and even with some 
 creativity some lack of solutions definitely demotivated me a little bit. 
 Additionally, sometimes I wasn’t sure in what direction I could help the 
 project in at certain times, and I definitely tried improving this part of 
 myself during most of this project to get to a point where I’m confident I 
 can fix these issues to be less of an issue in the future. 

 8  Closing Material 

 8.1 Conclusion 

 We were able to fully integrate the three main parts of our project laid out from the first semester. 
 This included the object and tracking functionality, calculations for determining the height of the 
 pitch and a full app design. We ended up pivoting from using C++ code in our app since it caused 
 performance issues while running Flutter and we found a better way to integrate the YOLO model 
 into our app that allowed us to take advantage of the CoreML architecture on newer iPhones. By 
 utilizing the ML architecture we were able to massively improve inference speeds to the point where 
 we no longer needed OpenCV’s tracking modules further reducing our need for running C++ code. 
 Unfortunately though due to time constraints and issues with translating our trained YOLO model 
 to a format compatible with Androids ML architecture we were unable to make our app cross 
 platform. In the future if another senior design group ends up working on our project they will 
 need to focus on training a more refined version of our YOLO model, translating it to a format 
 compatible with Android and performing more exhaustive testing. 

 8.2 References 

 [1] “C Interop using Dart:FFI,” Dart, https://dart.dev/interop/c-interop (accessed Dec. 7, 2024). 

 [2] “Required packages,” OpenCV, https://docs.opencv.org/4.x/d5/da3/tutorial_ios_install.html 
 (accessed Dec. 7, 2024). 

 [3] “Material library,” material library - Dart API, 
 https://api.flutter.dev/flutter/material/material-library.html (accessed Dec. 7, 2024). 



 9 Team 

 9.1 T  EAM  M  EMBERS 

 ●  Ethan Gruening 
 ●  Casey Gehling 
 ●  Sullivan Fair 
 ●  Josh Hyde 
 ●  Cameron Mesman 
 ●  Andrew Vick 

 9.2 R  EQUIRED  S  KILL  S  ETS  FOR  Y  OUR  P  ROJECT 

 ●  App Development 
 ●  Flutter Framework 
 ●  Machine Learning 
 ●  Yolo/Ultralytics 
 ●  IOS Development 

 9.3 S  KILL  S  ETS  C  OVERED  BY  THE  T  EAM 

 ●  Ethan Gruening: App Development, User Testing, Android Studio Emulation 
 ●  Casey Gehling: App Development, Flutter 
 ●  Sullivan Fair: App Development, Frameworks 
 ●  Josh Hyde: Flutter, App Development, Testing, Android 
 ●  Cameron Mesman: App development, Flutter, C++ 
 ●  Andrew Vick: App development, ML training, Swift, Flutter 

 9.4 P  ROJECT  M  ANAGEMENT  S  TYLE  A  DOPTED  BY  THE  TEAM 

 ●  Agile 

 9.5 I  NITIAL  P  ROJECT  M  ANAGEMENT  R  OLES 

 ●  Team Organization  : Ethan Gruening 
 ●  Client Interaction  : Casey Gehling 
 ●  Machine Learning Integration  : Andrew Vick 
 ●  Individual Component Development  : Sullivan Fair 
 ●  Research  : Josh Hyde 
 ●  Testing  : Cameron Mesman 



 9.6 Team Contract 

 Team Name ____________sdmay25-11________________ 

 Team Members: 

 1) __________Andrew Vick__________ 2) ________Casey Gehling___________ 

 3) __________Cameron Mesman______ 4) ________Joshua Hyde_____________ 

 5) __________Ethan Gruening________ 6) ________Sullivan Fair_____________ 

 Team Procedures 

 Day, time, and location (face-to-face or virtual) for regular team meetings: 

 1 pm every Wednesday (possibly) 

 2 pm every Monday with advisor (Dr. Fila) 

 Preferred method of communication updates, reminders, issues, and scheduling (e.g., 
 e-mail, phone, app, face-to-face): 

 Discord 

 Decision-making policy (e.g., consensus, majority vote): 

 Majority Vote 

 Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be 
 shared/archived): 

 Andrew Vick will record meeting minutes, which will be stored in a document on our drive, and I 
 will send a message in Discord for that meeting. 

 Ethan Gruening will record meeting notes, which will be stored in a document on the team’s shared 
 drive. 

 Participation Expectations 

 Expected individual attendance, punctuality, and participation at all team meetings: 

 We are expected to attend, share, and be on time for all meetings 



 Expected level of responsibility for fulfilling team assignments, timelines, and deadlines: 

 Everyone is expected to meet deadlines, make meaningful contributions to the project, and be on 
 time. 

 Expected level of communication with other team members: 

 Everyone is expected to be active in the discord and respond to teamwide questions within one 
 business day. 

 Expected level of commitment to team decisions and tasks: 

 Everyone is expected to be committed to team decisions and tasks. This extends to actively 
 engaging in discussions and conveying your ideas. 

 Leadership 

 Leadership roles for each team member (e.g., team organization, client interaction, 
 individual component design, testing, etc.): 

 Team Organization  : Ethan Gruening 

 Client Interaction  : Casey Gehling 

 Machine Learning Integration  : Andrew Vick 

 Individual Component Development  : Sullivan Fair 

 Research  : Josh Hyde 

 Testing  : Cameron Mesman 

 Strategies for supporting and guiding the work of all team members: 

 Weekly standup meetings where we discuss the week's events and ensure everyone is keeping up 
 with the workload. 

 Strategies for recognizing the contributions of all team members: 

 During weekly standup every member will share what they worked on and any information they 
 found regarding the development of our product. This allows every member to share their 
 contributions and receive feedback. 



 Collaboration and Inclusion 

 Andrew Vick, Software Engineering. Some of my relevant skills include C/C++, Python, and IoT 
 devices. Most of my experience has come from personal projects for instance, using Python, I 
 created my own virtual assistant. 

 Casey Gehling, Computer Engineering. Relevant technical skills are Embedded Programming, 
 Networking, Fullstack Development, and UI Design. Additionally, I have relevant experience in 
 client communication and requirements gathering. 

 Sullivan Fair, Software Engineering.  Relevant skills include general coding knowledge of Java, C, C#, 
 Python, JavaScript, AWS knowledge, GIT, and cybersecurity knowledge. 

 Ethan Gruening, Software Engineering. My relevant skills include, but are not limited to, Python, C, 
 Java, JavaScipt, and AWS. Most of my projects/experiences involve user interphases, I/O devices, 
 and API service integrations. 

 Josh Hyde, Computer Engineering. My relevant skills are generic coding in C/C++ and Java, and 
 some database work with MySQL. I also have been in different groups before and have had to work 
 together towards a common project goal. 

 Cameron Mesman, Computer Engineer. My relevant skills are coding with C and Java. I have 
 experience programming embedded systems, app design (backend, frontend, and database 
 languages), and computer architecture. 

 Strategies for encouraging and supporting contributions and ideas from all team members: 

 Goal-Setting, Planning, and Execution 

 Team goals for this semester: 

 Create a full implementation of our app 

 Perform user testing 

 Strategies for planning and assigning individual and teamwork: 

 During team meetings, we will identify what needs to be worked on for the week. From there, we 
 will assign who tackles which task based on their expertise. 

 Strategies for keeping on task: 

 Weekly goals and check-ins 



 Consequences for Not Adhering to Team Contract 

 How will you handle infractions of any of the obligations of this team contract? 

 In the event of an infraction by a team member, the team as a whole will reach out to the member 
 to see why they aren’t adhering to our contract. 

 What will your team do if the infractions continue? 

 If the infractions continue and we cannot resolve the issue internally, we will finally reach out to 
 Professor Fila regarding the member. 

 *************************************************************************** 

 a) I participated in formulating the standards, roles, and procedures as stated in this contract. 

 b) I understand that I am obligated to abide by these terms and conditions. 

 c) I understand that if I do not abide by these terms and conditions, I will suffer the 

 consequences as stated in this contract. 

 1) _________________Sullivan Fair_____________________  DATE __09/18/2024_______ 

 2) _________________Andrew Vick_____________________ DATE __09/18/2024_______ 

 3) _________________Casey Gehling____________________ DATE __5/1/2025_______ 

 4) _________________Ethan Gruening___________________ DATE __5/1/2025_______ 

 5) _________________Josh Hyde_______________________  DATE __4/28/2025_______ 

 6) _________________Cameron Mesman_________________ DATE __5/1/2025_______ 



 Appendix 1: Instruction Manual 
 1.  Open the app 

 a.  The user will see the Home page with a ‘Start’ button 

 2.  Click ‘Start’ 
 a.  The user will move to the instructions screen with details on how to properly set 

 up the camera and calibration 

 3.  Click ‘Done’ 



 a.  The user will be presented a screen to input their desired calibration values 

 4.  Click ‘Start Calibration’ 
 a.  The user will be prompted to place the ball at three positions: on home plate, held 

 at the reference height, and on the pitcher’s mound 
 b.  There will be a 15 second countdown before each picture is taken 

 5.  After the calibration process, the user will be taken to the tracking screen 
 a.  From here, the app is fully set up and the camera should not be moved as it would 

 compromise the calibration 
 b.  The ball needs to be in the bounding box for two seconds for the system to arm 

 itself 





 Appendix 2: Design Considerations 
 The team was able to create a working implementation of our app.  However, there are certain areas 
 of our design that we know can be improved upon in future work.  These areas include the YOLO 
 model, testing height accuracy, system stress testing, and adding a review section for past pitches. 

 First, our YOLO model is very one dimensional, meaning that it is trained in only a single lighting 
 conditions in an ideal scenario.  While we added augmentations to the images to make the model 
 more robust, it likely isn’t enough to cover the various lighting conditions that can be seen during a 
 softball game.  Training the model on a more diverse dataset will help make it more well-rounded 
 for a variety of game conditions. 

 Next, further testing should be done on the height calculation.  We currently have an accuracy of ±6 
 inches; however, because this is the core part of our app, more testing needs to be done to ensure 
 that the range is consistent.  Further training of our YOLO model will also result in more testing 
 being needed for the height calculation as the accuracy of the model can directly affect the height 
 calculation. 

 Third, our system needs to be fully stress tested.  We tested in pretty ideal conditions this semester 
 to ensure the core functionality of our app would work in practice.  That being said, more rigorous 
 testing needs to be done to ensure users are not able to break the app.  Rigorous stress testing will 
 allow for unknown bugs and errors to be found as the app is pushed to its limits.  These kinds of 
 tests could include placing the camera in non-ideal positions, having drastic lighting changes occur, 
 or having multiple softballs in frame at a single time. 

 Finally, we would have liked to have a feature where users could go back and review past pitches 
 and how they were called.  With  a “machine” umpire, users will likely want a way to verify what the 
 app saw and see if it is correct.  Having a past pitches screen would allow for users to go back and 
 review the app's performance and ensure that it is providing accurate results.  However, due to 
 current limitations with the Ultralytics-Flutter plugin’s proprietary camera controller, we were not 
 able to add it successfully. 



 Appendix 3: Alternate Designs 
 Throughout 491 and 492 we implemented many different prototypes to test the functionality of our 
 application. Through testing and future development, the alternative design prototypes were 
 overwritten or discarded from the final deliverables. It is important to note the designs that failed, 
 and those that are now incompatible as they are a part of the design process and were a part of 
 successful developmental cycles by leading our project in more effective direction. 

 OpenCV and KCF Tracking 

 In the planning phase of our development, we valued the accuracy of a system that integrates both 
 machinelearning and non-machine learning techniques for object detection and object tracking. 
 We developed multiple softball tracking prototypes that utilized the integration of OpenCV and 
 YOLO tools to efficiently compute where a softball is located within a frame while restricting our 
 reliance on machine learning models. 

 OpenCV is an image processing library for Python and C++ which can use multithreaded 
 approaches to quickly analyze an image for specific colors, textures, and patterns. OpenCV also 
 offers tracking modules which identify a moving object in frame, such as the KCF tracking 
 algorithm. 

 In prototypes that were disconnected from the Flutter application, the OpenCV and KCF tracking 
 tools performed very well when finding the softball by color, but could often not initially find the 
 ball. The YOLO model, with a higher runtime and reliability, was able to initially find the ball and 
 routinely check the OpenCV and KCF algorithms are still tracking the softball every 30 frames as 
 shown below. 

 The YOLO model used within this prototype was a trained on a small collection of images where 
 the softball was within 3 feet of the camera and indoors. This training data was too small and did 
 not fit our application’s true environment to train an effective model. As our development 
 continued, we collected and annotated over 9,000 images in a new YOLO model, which performed 
 at 30fps and had very accurate tracking results. The machine learning tracking outperformed the 
 non-machine learning OpenCV and KCF algorithms and led us to focus on a machine learning 
 object tracking system. Although the integrated tracking system was removed, it taught us the 
 importance of replicating training data to the system’s environment to better utalize modern 
 computer vision tools. 



 C++ Flutter Bridge 

 During the initial integration of our softball-tracking solution into our Flutter application, we were 
 researching potential ways to create the bridge between our original C++ backend running OpenCV 
 and our Flutter frontend. We had experimented with Dart FFI, a native Flutter library capable of 
 interacting with C++ code from the front end of our application. We had made progress with 
 constructing this bridge, even reaching the point where our model was callable from our front end 
 returning with ball coordinates, albeit this process introduced much latency hindering the user 
 experience of our application. We managed to obtain frames of real-time tracking which 
 dramatically fell short of our project requirements, taking minutes to return each coordinate from 
 the backend. 

 Our team attempted to reconstruct our application’s communication between the frontend and 
 backend and mitigate our CPU consumption by multithreading, passing memory pointers instead 
 of images, and decreasing the image size. Ultimately, as we began to adopt a solution revolving 
 around using the Ultralytics plugin to allow for automatic camera handling and pipelined model 
 processing. The C++ backend prototype was removed as a underperformant alternative to the 
 Ultralytics plugin. Although this prototype was removed from future development, it gave our team 
 a chance to further investigate our app’s CPU usage and analyze performance issues. 

 Past Pitches Screen 

 Originally, our application included recordings of  past pitches as 
 they transpired within a softball game. This was done by using 
 Flutter’s CameraController class to record from the camera and 
 save the video within the application with an indication of 
 “Illegal” or “Valid”. The users could then click the “Past Pitches” 
 button on the camera screen to view the last pitch. 

 However, after adopting the Ultralytics plugin that used its own 
 CameraController, it became difficult to refactor this feature since 
 only one CameraController can be active at one time. Regaining 
 access to the camera for the Past Pitches screen without heavily 
 modifying the underlying source code revolving around the 
 Ultralytics plugin would be too invasive to the library and remains 
 an incompatible feature. 

 The Past Pitches screen prototype still encourages our team to 
 find a way to communicate data from previously analyzed pitches 
 to the user. With video unavailable, our team has discussed the 
 opportunity to include graphs of the coordinates throughout the 
 pitch, detected by the model, paired with lines indicating the 
 maximum and minimum height requirements. 



 Appendix 4: Code Analysis 
 There are many directories in our code repository necessary for the Flutter framework.  However, 
 the bulk of our development lies in the ‘lib’, ‘ultralytics_yolo’ and ‘assets’ folders. 

 The assets folders contain the different YOLO models we trained, images, and the mp3 for the 
 illegal audio.  The best models we obtained from our training were the ‘bestv8-img640.mlmodel’, a 
 YOLOv8n model, and the ‘best-yolo11s.mlmodel’, a YOLOv11s model. 



 For lib, that contains the various screens including the home page, instructions, calibration, and 
 tracking screens.  Main.dart routes the user to the various screens of the app.  Setup.dart does the 
 same things as main.dart, but for once the user enters the setup of the tracking.  The rest of the 
 .dart files in the views folder represent the various screens a user will interact with when using the 
 app.  Yolo_screen.dart is the screen where the tracking of the softball is performed.  The widgets 
 folder contains assets like buttons that can be plugged into various screens.  This is one of the main 
 benefits of the Flutter framework. 



 Finally, the ultralytics_yolo folder contains the entire Ultralytics-Flutter plugin that we  included 
 locally in our repo.  The plugin is open-source, and because we needed to make some 
 customizations to the code for it to work for our desired camera orientation, we copied it locally 
 and made changes. 


