Slowpitch Softball Pitch
Detector

DESIGN DOCUMENT

sdmay25-11
Nick Fila
Dr. Jones
Andrew Vick (Machine Learning Integration)
Casey Gehling (Client Interaction)
Sullivan Fair (Individual Component Development)
Ethan Gruening (Team Organization)
Josh Hyde (Research)
Cameron Mesman (Testing)
Team Email
https://sdmay25-11.sd.ece.iastate.edu/



Executive Summary

Our senior design project focuses on developing a system to assist umpires in detecting illegal
pitches in slow-pitch softball games. The problem arises from the challenge of accurately
determining whether a pitch falls outside the legal bounds of 10 to 12 feet in height, leading to
inconsistent calls and disputes. Our solution aims to eliminate this ambiguity, allowing umpires to
focus on other aspects of the game while ensuring fairness and accuracy.

To address this issue, we are designing a mobile application that leverages computer vision and
machine learning to analyze softball pitches in real-time. This approach removes the need for
leagues to invest in expensive or specialized hardware, making our solution cost-effective and
accessible to a wide range of users. The app uses YOLO (You Only Look Once) for object detection
and tracking, enabling it to identify the softball and monitor its trajectory throughout the pitch.

The key design requirements include accuracy in determining pitch legality, minimal interference
with the flow of the game, and affordability for users. Feedback from current umpires has validated
these priorities, and our design aligns with their expectations.

Thus far, we have implemented the YOLO model to run within our Flutter application using a
plugin developed by the Ultralytics team. Due to the plugins limited functionality though we had to
alter it to better fit our needs. Additionally, we have developed calibration functionality that allows
the user to define key reference points—such as the pitcher's mound and home plate—and input
the camera's height. This calibration maps the physical space into a frame of reference, enabling
precise height calculations for the pitch and determining whether it is legal.

Our design meets the defined requirements by ensuring the app runs smoothly on readily available
iOS devices, avoiding the need for additional hardware. Accuracy is achieved through rigorous
training of a YOLO model and strict setup instructions. The next steps include adding additional
features to our app outside of the main functionality, like a past pitches screen.

By enabling umpires to confidently identify illegal pitches, our product aims to improve the quality
and fairness of games while maintaining accessibility and usability for all levels of softball leagues.



Learning Summary

Summary of requirements:

- Object detection system to locate a softball at its maximum height during a
pitch.

- Detect an illegal pitch when a softball’s maximum height is higher than the
specific maximum height or below the specific minimum height.

- Create an audible sound indicating an illegal pitch.

- The device cannot be physically obstructive to the game.

- The device must accommodate different fields, lighting, and balls.
- The device cannot be visually distracting to the game.

- The device must have a guided and simple setup.

- The device must have user-adjustable settings for the maximum and
minimum height for pitches.

New skills/knowledge acquired that was not taught in courses:

- Computer Vision
- Machine learning applications
- Flutter framework

- i0OS development



Table of Contents

1.  Introduction
1.1.  PROBLEM STATEMENT
1.2.  INTENDED USERS

2. Requirements, Constraints, And Standards
2.1.  REQUIREMENTS & CONSTRAINTS

2.2. ENGINEERING STANDARDS
3 Project Plan
3.1 Project Management/Tracking Procedures
3.2 Task Decomposition
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria
3.4 Project Timeline/Schedule
3.5 Risks And Risk Management/Mitigation
3.6 Personnel Effort Requirements
3.7 Other Resource Requirements
4 Design
4.1 Design Context
4.1.1 Broader Context
4.1.2 Prior Work/Solutions
4.1.3 Technical Complexity
4.2 Design Exploration
4.2.1 Design Decisions
4.2.2 Ideation
4.2.3 Decision-Making and Trade-Off
4.3 Proposed Design
4.3.1 Overview
4.3.2 Detailed Design and Visual(s)
4.3.3 Functionality
4.3.4 Areas of Concern and Development
4.4 Technology Considerations

4.5 Design Analysis

A O O & O wum

O 00 N NN N

O O O O

\e}

10

10

10

10



5 Testing
5.1 Unit Testing
5.2 Interface Testing
5.3 Integration Testing
5.4  System Testing
5.5 Regression Testing
5.6  Acceptance Testing
5.7  Security Testing (if applicable)
5.8  Results
6 Implementation
7 Professional Responsibility
7.1 Areas of Responsibility
7.2 Project Specific Professional Responsibility Areas
7.3 Most Applicable Professional Responsibility Area
8 Closing Material
8.1 Conclusion
8.2 References
9 Team
9.1 TEAM MEMBERS
9.2 REQUIRED SKILL SETS FOR YOUR PROJECT
(if feasible - tie them to the requirements)
9.3 SkiLL SETS COVERED BY THE TEAM
(for each skill, state which team member(s) cover it)
9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM
Typically Waterfall or Agile for project management.
9.5 INITIAL PROJECT MANAGEMENT ROLES

9.6 Team Contract

10
11
11
11
11
11
11
11

1
12
12
12
12
12
12
12
3
3
3
3
3
3
3
3
3
3
3



1. Introduction

1.1. Problem Statement

In the game of softball, one crucial rule states that a pitch is only legal if the ball reaches its peak

height within a minimum and maximum height bound during its flight to the batter. Currently,

umpires must estimate this height by eye for every single pitch: a challenging task that relies heavily
on personal judgment and can vary from one umpire to another. This reliance on subjective
estimation can lead to inconsistent calls, potentially altering the outcome of games and affecting
the fairness and enjoyment of the sport. Players might strike out on pitches that should have been
deemed illegal, and fans may witness games swayed by questionable decisions.

These issues highlight a broader problem: the lack of accessible technology to assist in making

precise, real-time measurements during games. To address this, we are developing an affordable

and user-friendly device that tracks each pitch using a single camera, accurately measures the ball's

height using machine learning, and alerts officials when a pitch falls outside the legal bounds. By

eliminating the guesswork from pitch height estimation, we aim to enhance the accuracy of calls,

uphold the integrity of the game, and improve the experience for players, umpires, and fans alike.

1.2. Intended Users

Our product is designed to benefit several key groups within the softball community, including
umpires, players, fans, and coaches.

1. Umpires

a.

2. Players
a.

Description: Umpires are the officials responsible for enforcing the rules of
softball during games. They must make quick, accurate decisions under the
pressure of real-time play, often without technological assistance.

Needs: Umpires need a reliable method to accurately determine if a pitch meets
the legal height requirements, reducing the reliance on subjective judgment and
minimizing errors that could impact the game's outcome.

Benefits: Our device provides umpires with precise, real-time measurements of
each pitch's height. This technology aids them in making consistent and accurate
calls, reducing stress and enhancing their confidence in officiating. By supporting
umpires with accurate data, we help maintain the game's fairness and integrity,
directly addressing the issues outlined in our problem statement.

Description: All players in a softball game are directly affected by the calls made
by umpires and strive for a fair and competitive environment to showcase their
skills.

Needs: Players need assurance that the rules are being applied consistently so that
their performance is judged fairly. Batters, in particular, need protection from
illegal pitches that could unfairly result in strikeouts.

Benefits: With our device ensuring accurate detection of illegal pitches, players
can trust that the game is being officiated fairly. Batters are less likely to be unfairly
penalized, and pitchers receive clear feedback on the legality of their pitches. This
fosters a fair playing field and allows players to focus on their performance,
enhancing the game's overall quality in line with our problem-solving goals.



3. Fans

Description: Fans are the spectators who enjoy watching softball games, whether
in person at the stadium or through broadcasts. They are passionate about the
sport and value exciting, fair competition.

Needs: Fans desire an enjoyable viewing experience where player skill rather than
officiating errors determine the game's outcome. They appreciate transparency and
fairness in how the game is played and called.

Benefits: By improving the accuracy of pitch legality calls, our device enhances the
fairness and excitement of the game, leading to a more satisfying experience for
fans. They can enjoy the sport knowing that technology is helping to uphold its
integrity, which aligns with our aim to improve the overall enjoyment of softball.

4. Coaches and Teams

a.

Description: Coaches and team staff are responsible for training players and
developing game strategies. They work closely with players to improve skills and
ensure compliance with the rules.

Needs: Coaches need effective tools to train pitchers on delivering legal pitches
and to adjust strategies based on accurate information about gameplay.

Benefits: Our device can be used during practices to provide immediate feedback
to pitchers on the height of their pitches, aiding in skill development and rule
compliance. During games, accurate officiating supported by our product allows
coaches to focus on strategy without worrying about inconsistent calls. This
directly enhances player performance and upholds fair competition, as highlighted
in our problem statement.

By serving these users, our product addresses the critical issue of subjective pitch height estimation
in softball. It promotes fair play, enhances the accuracy of officiating, and improves the overall
experience for everyone involved in the sport. Our solution connects directly to our overarching
goal of removing guesswork from the game, ensuring that softball is enjoyable, fair, and competitive
for all participants



2. Requirements, Constraints, And Standards

2.1. Requirements & Constraints

Functional Requirements

- Object detection system to locate a softball at its maximum height during a pitch.

- Detect an illegal pitch when a softball’s maximum height is higher than the specific
maximum height or below the specific minimum height. (constraint)

- Create an audible sound indicating an illegal pitch

Physical Requirements

- The device cannot be physically obstructive to the game.
- The device must be portable to set up on a softball field.

Environmental Requirements

- The device must accommodate different fields, lighting, and balls.
- The device cannot be visually or audibly distracting to the game.

Ul Requirements

- The device must have a guided and simple setup.
- The device must have user-adjustable settings for the maximum and minimum height for
pitches. (constraint)

Constraints

- Maximum height (in feet) the softball can reach on a serve.
- Minimum height (in feet) the softball must reach on a serve.
- The device cannot be physically obstructive to the game.



2.2. Engineering Standards

The Importance of Engineering Standards (Qz)

Engineering standards are important because people interact with engineering products every day.
If there were no engineering standards, that would not only compromise the desired quality of
engineering products but also affect things like the safety of everyday people. For example, people
interact with civil engineering like bridges and buildings, and non-physical structures like apps and
programs. A lack of requirements for these products could result in catastrophic failures of civil
structures or a breach of confidential personal data from an insecure application. Engineering
standards help ensure that these types of issues are avoided so people can continue to use these
products to improve their lives and the lives of others

Published Engineering Standards (Q2)

- IEEE 1857.9-2022 provides standards for video encoding/decoding and analyzing methods.
These standards apply to all forms of video manipulation, spanning from areas such as
network video transmission over services such as UDP to computer vision topics such as
object detection.

- IEEE P31u10 provides the standards for the necessary API requirements in a computer vision
implementation. These API abstractions interface with various machine learning
algorithms and are used to develop computer vision solutions such as OpenCV.

- IEEE 1008-1987 provides guidelines for proper unit testing with a codebase. Specifically,
guidelines exist for proper categories of testing (unit, integration, etc.) and code coverage
reporting, among other testing-related requirements.

Engineering Standards Relevancy (Q3)

After reviewing the three standards, each has varying relevance to our project. Since our primary
focus is on computer vision, IEEE P3u0 is highly applicable. This standard provides guidelines for
API requirements in computer vision and will help us ensure our project adheres to best practices
when working with machine learning models like YOLO. It offers a strong foundation for
structuring our computer vision solution. IEEE 1008-1987 also holds some relevance, as it provides
useful guidelines for software testing. While our project’s smaller scale, incorporating structured
unit testing can still improve code reliability. On the other hand, IEEE 1857.9-2022 is less applicable
since it focuses more on video encoding and compression, which isn’t central to our object
detection work.

Other Applicable Standards (Q4)

Some of the standards we found that differed from those provided that might be at least somewhat
applicable to our project are below. IEEE Standard Digital Interface for Programmable
Instrumentation. This standard applies because we use equipment and information that takes in
different measurements. We will use different types of instrumentation that may be programmable
to detect the softball. IEEE Standard for Application Programming Interfaces (APIs) for Deep
Learning (DL) Inference Engines. This engineering standard is applicable because we are
programming a solution to consistently and accurately find the height of a softball, including deep
learning and Al-based detection algorithms. [EEE Standard Letter Symbols for Units of
Measurement (SI Customary Inch-Pound Units, and Certain Other Units). This standard is



applicable because it ensures that we incorporate the appropriate symbols for our measurement
and that it is understood clearly using accurate measurements and symbols.

Modifying Our Project to Incorporate Engineering Standards (Qs)

Since our design is not finalized as we continue to test and prototype different designs, we don’t
need to make any modifications now. However, several of these standards must be considered as we
proceed with our design. Firstly, as we develop the software component of the project, we will need
to keep in mind IEEE 1008-1978 regarding unit testing. We need to ensure that we are writing the
software in a way that can be easily tested. We will also need to consider IEEE P3110 which covers
standards with computer vision. Since many of us have never built an official project using
computer vision, it is not natural to consider these standards. Moving forward, standards like this
one must be considered during design

3 Project Plan

3.1 Project Management/Tracking Procedures

We decided to adopt an AGILE methodology to manage our project. There are complex
components we need to manage with our app. These components include our height detection
script utilizing a machine learning approach and a mobile app utilizing Flutter and the Ultralytics
Flutter plugin. To make development more manageable, we can divide the work into AGILE sprints
with smaller goals, so we are not trying to tackle the entire project at once. This will improve our
understanding of individual project components and help make a full implementation easier. To
keep track of our progress, we are utilizing Git issues coupled with personal branches for individual
development. Having an issues board will help us manage what tasks must be done. Using personal
branches will help isolate development so we can develop individual components more efficiently
without accidentally breaking the project's main branch or having more than one person alter the
same file in different ways.



3.2 Task Decomposition

Slow-Pitch Officiary

.

Integration and ‘

Testing
Object Tracking Model-compatible
WModel Frontend

T A A A

Augment and Train

k‘—J\4J
Deduce geometric Develop system Develop instructions
equation for height arming logic and setup procedure
Annotate data
Collect data

These tasks are intentionally left broad since we have not made final decisions on the entire design.
Based on the AGILE methodology, many of these tasks will be adjusted as development continues
and we receive feedback from the client. Any testing and prototyping would also affect our final
implementation of these tasks. With this task decomposition, we split the project into two major
tasks: detecting illegal pitches and developing the mobile application. These two tasks are the most
significant challenges and are further broken into subtasks. In creating a model-compatible
frontend we needed height calculation, pitch detection, and setup techniques. In developing an
object tracking model we must collect, annotate, and augment data for training. Integration of the
model and frontend would be completed for a fully functional application.

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

In an AGILE development process, these milestones can be refined with successive
iterations/sprints (perhaps a subset of your requirements applicable to those sprint).



3.4 Project Timeline/Schedule

1-C 02/03-02/08  0210-02/16  02/17-02/23  02/24-03/02  03/03-03/08  03M10-03/18  03/17-03/23  03/24-03/30  03/31-04/06  04/07-04/13  04/14-04/20  04/21-04/27  04/28-05/04 5/05 - 05/0

Apply user feedback to app: o
« Add quality of life suggestions e
« Adjust displayed dataif needed Gt i)
Continue testing:
- Determine if we're meeting our goals
Tracking Improve runllmflefﬁciefu:v of code:
+ Multi-threading?
Refinement

User
Feedback

Above is our proposed AGILE project timeline, featuring a clearly outlined sequential list of

ul Add visuals/video to how-to:

« Reference height photos
Enhancements « Link to video demo

Initial tests of full integration:

Testing Create test plan + Field testing
+ Data collection

Continuous improvement:
« Focus on lacking area
+ Support strong areas

milestones. Our project has been separated into four parallel-running distinct categories: Ul
enhancements, testing, (object) tracking refinemenst, and collecting user feedback . Following an
AGILE methodology, we have separated our project timeline into roughly one-week sprints where
certain tasks are scheduled for completion. Each bar on the above Gantt chart represents a
deliverable within an AGILE timeframe set to expire at the bar's end. Holistically, the above Gantt
chart can be summarized in sprints as follows:

Timeframe/Deliverables
02/03 - 02/09 (Sprint 1)

- Create test plan
- Develop prototype plans

02/10- 02/16 (Sprint 2)

- Initial tests

02/17 - 02/23 (Sprint 3)

- Improve runtime
- Improve functionality

02/23 -03/02 (Sprint 4)

- Add Visuals
- Add Videos
- Start trying to combine app with model

03/03 -03/09 (Sprint 5)

- Test product with users
- Keep testing

03/10 -03/16 (Sprint 6)

- Continue Testing



- Fix bugs and improve optimality
03/17 - 03/23 (Sprint 7)

- Continue Testing
- Make sure tests are going smoothly

03/24 - 03/30 (Sprint 8)
- Apply feedback to app
03/31 - 04/06 (Sprint 9)

- Continued improvement
- Fixissues and or areas that need improvement

04/07 - 04/13 (Sprint 10)

- Test more with added improvements
- Tryand find and then fix any issues

04/14 - 04/20 (Sprint 1)
- Add final functionalities of the app that will be used
04/21 - 04/27 (Sprint 12)

- Present final product to users for testing
- Make final adjustments and improvements of the app/code

04/28 - 05/04 (Sprint 13)

- Finish the full working app
- Complete all final deliverables

3.5 Risks and Risk Management/Mitigation
Sprint 1:

- Risks:
- Our current implementation of the opencv C++ backend with flutter isn’t
ideal, as the implementation and usage of both of them currently are separate
and need to be implemented together if we want to make any sort of progress.
- Mitigation:
- Try and merge our flutter project app development with our new C++ backend of
the opencv implementation

Sprint 2:

- Risks:



- The main issue is that running yolo on the phone without utilizing Apple’s
ML framework causes significant frame hangs and stutters
- We are also having difficulty translating the frame coordinates for the raw
image data to the coordinate system flutter is using.
- Mitigation:
- Potentially implement the Ultralytics plugin model that can better run the yolo
model much faster and with less framerate loss. Could also run faster than before

as well.
Sprint 3:
- Risks:

- YOLO through the Ultralytics functions still need to be integrated into
Flutter’s tracking thread. A finer-tuned model can also help YOLO’s accuracy
in determining only softballs within the frame.

- The height calculations when self-identifying the ball still needs to be unit
tested, and there is currently an error with iOS setup.

- Grid layout still needs to be implemented.

- Mitigation:

- Implement the grid layout as quickly as possible, allow the integration of YOLO
through Ultralytics in flutter’s tracking thread. Test and ensure the accuracy of the
height calculation

Sprint 4:
- Risks:

- Ultralytics still has some issues when implementing this and the overall
implementation of all of these parts still needs to be studied and merged together.

- Mitigation:

- Continue debugging the issues with Ultralytics YOLO and make sure that we start

merging the other aspects together.
Sprint 5:
- Risks:

- Currently, all of our components are separate

- We need to get a central screen that meshes everything we have worked on to
beg to not have a central screen yet that we can test our current info and
analysis on yet.

- Still haven't really tested anything yet with actual on field tests

- Mitigation:

- We need to get a central screen that meshes everything we have worked on to

begin doing real live tests.
Sprint 6:

- Risks:



- Current roboflow model that we implemented from last semester isn’t entirely
accurate, however it was tested on different angles and types of videos that aren’t
very similar to what we are going to test on.

- Mitigation:

- Implement a new roboflow model that is trained mainly if not completely on the
actual camera angle and general conditions that we will be using the app on, so a
side camera angle on a field with the ball being thrown in the air across the screen.

Sprint 7:

- Risks:

- The Roboflow annotations still need to be completed. This takes time, and a
new model can be built once finished.

- The Ultralytics plugin requires portrait orientation, while our application
requires landscape mode. This causes an error in the sizing and orientation of
the camera preview.

- The Ultralytics plugin currently does not update the ball coordinates variable.

- Mitigation:

- Try to annotate the new roboflow model as quickly as possible, and try and fix the
orientation issues of Ultralytics forcing portrait, by potentially changing the rest of
the app to portrait orientation. Try and fix the issue of plugin not updating the
coordinates or not

Sprint 8:

- Risks:
- The Roboflow annotations are still being worked on
- The Ultralytics plugin requires a TensorFlow Lite model for Android.
- The Ultralytics plugin currently does not update the ball coordinates variable.
- Mitigation:
- Finish annotating the roboflow new model images, as well as try and implement
the new tensorflow Lite model for the ability to run our roboflow model on
android as well.

Sprint o:

- Risks:
- The orientation fixes for IOS changed the Android orientation to be off now,
so we might need more platform specific orientation changes.
- Further testing and enhancing of our current model
- Further work and implementation of pitching box and detecting when a pitch
is being thrown and not just any ball in frame.
- Mitigation:
- Potentially fix platform specific orientation changes or switch to only one platform.
Allow the pitching box to have an arming system that will arm when ball is
detected for a certain amount of time within the pitching box.



Sprint 10:

- Risks:

Our conversion of YOLO coordinates to standard image size is not
functioning. We need a new way of mapping our coordinates used in height
calculations.

Full functionality is present within individual components and need to be
integrated into the full system.

- Mitigation:

Sprint 11:

- Risks:

Switch coordinate system and calculations to only one form of coordinates,
preferably just use the YOLO coordinate system for everything to standardize it.
Start working on full integration and test to make sure everything works together
well.

YOLO red ball marker
- When the Yolo model is executed using the iOS CoreML framework,
the ball’s x and y coordinates are automatically captured as values
between [0, 1]. Currently, the Ultralytics plugin converts these
coordinates back to pixels based on an assumed aspect ratio.
UI Fixes
- Overflowing widgets
- Instructions page is outdated
Illegal logic listener
- When ‘tracking’ is triggered to True, listener must collect and analyze
the ball coordinates throughout the pitch until a max height is
reached.
- Sound should be played with the max height found is out of bounds.

- Mitigation:

Sprint 12:

- Risks:

We could pass the x and y values directly to our screen, which calculates
height, and then scale the ball’s position to fit our screen dimensions.
Update instructions page, try and fix overflow.

Implement the illegal sound audio to be played at the correct time.

The presentation and design document are not yet complete.
Do the finishing touches to our project, specifically small UI changes and
making sure that the app runs smoothly and as accurately as possible.

- Mitigation:

Finish up working on the presentation and design document as early as possible.
Fix and update the final touches on our project.



3.6 Personnel Effort Requirements

Team Member

Task Descriptions

Hours Worked

Sullivan Fair

YOLO Model development, Helped integrate
Ultralytics-Flutter plugin, Gathered pitching data,
Creating arming system for tracking, Refined Flutter
screens, Performed user testin and gathered feedback

129

Casey Gehling

Flutter screen development, C++/Flutter integration
research, codebase hygiene maintenance, field
research, video caching implementation, client
interaction/team interaction

107

Ethan Gruening

Prototype height calculation techniques, collect
pitching data and videos, continuously developed and
improved all Flutter screens (instructions, setup,
tracking), field test for development, conducted user
and model testing, weekly update presentations, and
developed team website.

170

Josh Hyde

Prototype object detection, research on different
models and potential solutions, testing videos, Flutter
screen work, illegal height lines, grid lines, android
implementation work,

124

Cameron Mesman

Flutter screen mock-ups, integrating C++ code into
flutter, integrating illegal pitch audio into flutter code,
field testing, unit testing

14

Andrew Vick

Prototype object detection code, translate python
scripts into C++, prototype detection and tracking code
running on iPhone, Integrate tracking code and object
detection

120

3.7 Other Resource Requirements

Developing a mobile application, our team already owns cell phones to test our Flutter applications

on iOS operating systems. The primary resources our team has and will continue utilizing are Iowa

State’s recreational softball fields. Field availability is crucial for the research and testing for proper

camera setup, object detection, and in-game functionality. Field reservations will be made as
needed for future testing.




4 Design

4.1 Design Context

4.1.1 Broader Context

design must be non-intrusive and not be in
the way of gameplay. There should be little
to no contact between the game activity
and our physical device to ensure public
safety.

Area Description Examples

Public health, Our project is a bystanding officiary to an | Considering public safety, our setup
safety, and existing softball game, an environment is a mobile device placed on a mount
welfare with a high risk for player injury. Our along the fence. This ensures

minimal physical interaction
between the players and the device,
limiting additional risk for the
players.

Global, cultural,

Slow-pitch softball is a variation of a

As engineers, our social and ethical

must consider how our product will
impact the league's funds for both umpire
training and operation.

and social typical softball game for more novice responsibility is to create a design to
players. Local leagues and amateur accommodate local leagues. Our
slow-pitch players are our target design as a mobile application opens
communities and it is our mission to our user base to all people with
ensure this device is catered to their smartphones. This addresses the
financial and accessible needs. low-cost and portable solution that
local leagues would require.
Environmental Since our project is very niche, there is Our product can be downloaded onto
little to no environmental impact when a user’s smartphone to limit
using our product. However; it is additional electrical components.
important to recognize the environmental | Additionally, a power supply for the
impact of materials and power smartphone will need to be provided
consumption of the operating devices. and may require a battery charger for
prolonged extended use.
Economic Catering to local slow-pitch leagues, we Our product will be affordable for all

users within a slow-pitch league
since it requires an existing
smartphone. A simple setup ensures
that there will be little time training
umpires to use the application or set
it up before a game.

4.1.2 Prior Work/Solutions

Include relevant background/literature review for the project (cite at least 3 references for literature

review in IEEE Format. See link:
https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf )

Beginning our discussions on our project design, we researched existing products and solutions for

cameras that can track balls within a sports setting. Analyzing the existing products, their user

reviews, and their targeted impact helped our team decide what approach would best suit our

project.

B TR

4) R ) gk



https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf

The first product we researched was the Specialized Imaging Tracker 2, a high-speed fast projectile
measurement camera. This camera has three-axis rotation for camera positioning and is
programmable for customization. Many users liked the full remote operation, multiple operating
modes, tight accuracy error margins, and no need for calibration. However, this is a research-grade
camera with a high cost and is very large. Considering our use case, local slow-pitch leagues would
appreciate a camera with small error bounds and little to no calibration. Additionally, it's essential
for our users to have an affordable and portable option for recreational use. The Specialized
Imaging Tracker 2 may be too advanced for the operating scenario and out of the price range for
local leagues.

A similar product used in professional sports games is the Veo 3 Sports Cam. This is a 360-degree
camera that not only tracks sports balls but also tracks players, displays heat maps, match stats, and
tags game actions. This device is known for its object detection accuracy and
long battery life. Users can also live stream their sports games through this
camera. These features would benefit local softball leagues, though they are
not needed for operating as a slow-pitch officiary. The downside to this
product is it costs $2,400 and requires a subscription to operate. Used in a
professional sense, the Veo 3 Sports Cam is a successful product. Its features
may not be needed for the primary operations of a slow-pitch officiary tool;
however, the high standard for preserving the integrity of the game with an
accurate system gives users the confidence to use the product in game settings.

The Pocket Radar Smart Coach is another product specializing in ball
detection in a softball setting. This
product is a small device, about the size of a smartphone,
and records a clip of a softball pitch and its speed. The
device is compatible with a mobile app that saves the video

SMART COACH

and speed of pitches. With a strong user interface, there are
many positive user reviews. Users typically buy this product
for the connection to their mobile device, the ability to share
and review their pitches, and a cost-effective solution with a
portable design. The Pocket Radar targets users who

recreationally play and practice softball and baseball. Their
isolation of extra sensors and cameras into a handheld
device makes it accessible. A drawback to creating a small device is there is low battery life that
limits users to a small usage time. The lower-quality camera has a more significant error bound
than professional cameras, with a 1 mph error. Although this device has a small battery life and a
more significant error bound, it is more tailored for local and recreational users, receiving positive
feedback for their specific use cases.

4.1.3 Technical Complexity

Our slow-pitch softball application has several components that integrate together mathematical,
engineering, and social challenges. Our engineering challenges can be split into two main modules:
the frontend user experience and the height detection. The project's technical complexity would be
a large project to design, prototype, and test. Considering this needs to be developed to be



affordable and portable for local leagues, this increases the complexity as more readily available
technologies should be used for a wider user base with lower costs.

The height detection component of the project will require using a camera feed and
machine-learning object detection techniques and existing libraries in tandem. Additionally, object
detection alone will not be enough to determine height; a technique must be found to coordinate
the ball’s location to a specific height through geometric calculations or calibrated values. With the
limited existing products, our team must find our own solution to determining height using
engineering principles and practices. Once accomplished, there can be further development to
increase the fps or computation time for frame analysis. As an open-ended component of the
project, the technical design, prototyping, and testing is a true example of an engineering problem
within the real world.

The height detection backend component is the application’s “computational brain.” Gathering
calibration information, collecting camera frames, and setting maximum and minimum heights will
need to be incorporated into the system’s frontend display. A user would interact with the program
in several ways to start, end, and view the officiary logs. It is essential to develop an accessible and
guiding frontend for umpires and players to experience a seamless setup and collection process. The
compatibility of the frontend and the backend is also very important. This module is a technically
advanced project, not only developing a user interface but also stitching it with the backend’s
operations and reporting its output.

In total, the technical components of this project provide complex engineering problems that
match the industry standards as a real-world software project.

4.2 Design Exploration

4.2.1 Design Decisions

A primary design decision was what system we would use for the camera collection and user
interface. This decision will define what our users will need to purchase, calibrate, and gain
familiarity with when running our application. From a technical standpoint, using multiple cameras
would gain more data points to pinpoint the exact height of the ball. However, developing this
product specifically for the ease and affordability of local slow-pitch leagues, we decided to
implement this application on a singular mobile device. This design decision increases the project's
technical complexity but better suits our user base. The application was chosen to be developed
using Google’s app development platform, Flutter, which can be compiled to run on both Android
and iOS, however our development is only focussed and works with 10S. Allowing anyone with a
mobile device to install our application invites many users to interact with the widget-based
accessible program for 10S. This was our most critical design decision, led by our social and ethical
responsibility and our user needs.

Another design decision was the technologies to use in the object detection of the softball within
the camera frame. This decision was based on the compatibility with Flutter, the speed of the
library’s methods, and the accuracy. After careful consideration and research, we decided to utilize
the Ultralytics Flutter plugin, which allows us to efficiently run a custom-trained YOLO model for
object detection. The plugin provided the best performance compared to hybrid solutions. Using
a custom YOLO model for our object detection allows us to have complete control over how we



want to refine the machine learning algorithm to best track softballs in out application. The plugin
also offers an easy easy to switch which model we are running, allowing us to test models more
efficiently. Overall, this decision balances performance with freedom of development, which
complements the flexibility of our implementation.

The final major design decision was the height calculation technique used to take in the position of
a softball within a camera frame and output a specific height. After researching, the vertical pixel
distance is constant and can be converted to feet when calibrated with known heights and a horizon
line (the line from the home plate to the pitcher’s mound). This was found by placing a camera
equidistant from the home plate and the pitcher’s mound, selecting where both are located within
the frame and where a known height exists along the horizon line. The image below shows the
equal segments representing 2ft.

Fro j--. i

ST TS

\‘ ' N I
R .-!-'-l-l"'l ”"ﬂl-'_"

We now have a technique to analyze the (x,y) of the softball and determine if it lies within the
maximum and minimum height bounds set by the user.

4.2.2 Ideation

The design decision we struggled with the most was finding and deciding on the height detection
technique. As mentioned in section 4.2.1, we finalized the decision for finding the corresponding
ground line below the pitch from home plate to pitcher's mound and identifying a known height to
get the vertical pixel-to-feet ratio and turn the detected softball’s (x,y) coordinates into a height
value. There were other prototyped and researched height calculation techniques that we
considered for the final design:

e Multi-Camera Detection
o Set up three cameras in different locations throughout the field.
o Run the object detection on all the cameras and determine the ball's distance from
each camera with the camera’s detected radius.
o You can use each camera’s height to triangulate the exact location of the ball,
including height.
o This violates our design choice for a single camera.
e Machine Learning
o Given a machine learning model the distance to the softball, calculated by the pixel
radius of the detected softball, and the (x,y) coordinates, a machine learning model
will guess the height.



o  After many iterations of training the model, we found it inconsistent and widely
inaccurate.
o The search for a geometric calculation technique was needed for fast and accurate
return values.
e Known Radius Geometry
o With the assumption that the radius stays constant for all softballs, we can use the
number of pixels of the detected softball to find its distance from the camera
o Given its (x,y) coordinates, we can determine the angle from the camera and use
e Pitching Line Calibration
o The home plate and pitcher’s mound are identified within the camera frame
o The pixel-to-distance ratio can be calculated with the known distance between the
bases.
o The pixel-to-distance ratio was inaccurate as the vertical ratio of pixels differs from
the horizontal ratio.
o The ratio found in this method will only determine horizontal distances, not
vertical heights.
o The search for a vertical distance conversion is needed to find the height of a given
(x,y) point.
e Known Heights Calibration
o The home plate, pitcher’s mound, and known heights are identified within the
camera frame

o The vertical pixel-to-distance ratio can be calculated from the home plate to the
pitcher’s mound line and known height’s lines.
o The height can be calculated given the (x,y), getting the number of pixels from the
pitching line, and translating it into feet.
o Used in the final design.

4.2.3 Decision-Making and Trade-Off

Detection

It would require users
to place and have
access to multiple
cameras running the

Research shows this
method is fairly
accurate in
triangulating a point,

Design Option User Compatibility Observed Mathematically
Accuracy/Performance | Supported
Multi-Camera 3/10 9/10 10/10

Triangulation is a
technique used in
satellites for GPS
tracking for its

No setup would be
needed as the
machine learning
model will handle the
field differences.

The machine learning
algorithm struggled to
accurately depict
heights when the
camera was moved into
a new environment.

application but the camera accuracy.
connection will delay
the computation.
Machine Learning 10/10 4/10 5/10

Machine learning is
the analysis of data
trends, not a direct
hard-coded
mathematical
relation between ball




position and height.
Known Radius 9/10 3/10 4/10
Geometry The height of the The radius of the ball The angle of the ball
camera would need to | becomes very small to the camera based
be inputted by the when the camera is on its position in the
user. placed far away, so the | frame varies from
exact distance jumps camera to camera.
when the radius
increases by one pixel.
Pitching Line 7/10 8/10 7/10
Calibration You would have to The observed height The horizontal
select 2 points on the | looked fairly accurate pixel-to-distance
camera feed as a part | when measuring a few | conversion ratio is
of the setup. trials in person, but similar to vertical,
reading larger heights | but not quite the
prompted larger errors | same.
Known Heights 6/10 9/10 9/10
Calibration You would have to The vertical known
select 4 points on the | The observed heights are
camera feed as a part | calculated heights equidistant when
of the setup. seemed accurate, and viewed and can be
the vertical distance used to calculate a
distribution of pixels strong vertical
was visually equivalent. | pixel-to-distance
ratio
OpenCV 3/10 5/10 7/10
Very slow and isn't Could detect the balle | Realistically, opencv
very practical for an quite accurately, but is quite
app that uses opencv | only up close. Not as mathematically
to be usable for most | practical for an app to | supported, it uses
users. use well-know strategies
to be able to detect
things
Ultralytics YOLO 7/10 9/10 8/10
Easy to integrate into | Real-time object Uses convolutional
mobile apps, but takes | detection is accurate neural networks,
a while to integrate and consistent across which are
with roboflow pytorch | varied environments mathematically
files. with good lighting. grounded but
abstract

We chose the known heights calibration because of the mathematical accuracy it provides. The
observed height still needs to be rigorously tested but has the most significant potential of the
options. The multi-camera detection option was not considered because it did not align with our

cost-effective user needs and requirements for fast computations.




4.3 Proposed Design

4.3.1 Overview

Starting with the Flutter app on a mobile device, users will have access to set up calibration values
(min height, max height, and reference height) for the camera to fit their specific environment.
When they enter the tracking screen, our app will utilize the Ultralytics-Flutter plugin to access
their device’s camera and begin feeding it into our YOLO model. With the plugin, we are able to
execute the model in the Flutter environment. The YOLO model will track the ball based on a
custom dataset that we created. The model will then return the coordinates of the ball which we
can then use to calculate the height using our pixel conversions. In addition, we do not want our
model to be tracking the height of the ball all the time as that would result in illegal calls being
made when the ball is in play. So, we also developed an ‘arming’ system that involves drawing a
bounding box around the pitcher’s mound. When the ball is found in that box for two seconds, our
tracking algorithm triggers and the app begins checking for an illegal pitch.

4.3.2 Detailed Design and Visual(s)

Calibration:

e Use YOLOv8 model to track the ball and collect the coordinates of the home plate, a
reference height, and the pitchers mound.

Reference Height Y- — = Reference Height
Value  s— | Pixel Distance
Q ;
) Reference Height =
Reference Height (ft) =O Pixel Distance S|

Calculate Height:

o Use YOLOv8 model to track the ball and collect the coordinates when pitched

=

| — f—

N Ball Height (%

— el REmIL,

[ ]

e Map the Pitcher’s Bounding Box

System Arming:



200 Pixels 200 Pixels

Setup Values
O
e Box Status Indicators (Red, Yellow, Green)




4.3.3 Functionality

| want to use r'-.-"\
Pitch Snitch! Biteh Snitch
> 1\ > M
[}
) Download from
Umpire D
the App Store

. SET VALUES =3

———

START

CALIBRATE 3
TRACKING

FIELD

YOLO Ball
Coordinates

(x,y)
SETUP/

CALIBRATION
VALUES

_If Pitched__ megp-  Find Max Height — _Iflllegal._. - — :(] )))
Play"lllegal" Audio

4.3.4 Areas of Concern and Development

Currently, we have a complete implementation of our app. Users are able to specify the known
height in the app, and through our calibration process, are able to use the app to track the height of
a softball. However, the main area of concern for our application is the robustness and accuracy of
our machine learning model. In the model’s current state, it is not sufficiently trained on all of the
various lighting conditions that may be present during a softball game. To mitigate this issue, the
model can be trained further on datasets with more lighting variety to increase the overall accuracy.
In addition, we have been experimenting with different versions of YOLO models, mainly YOLOv8



and 11. We need to be able to find the model that provides the best combination of accuracy and
performance, which is the end goal of making it best for our users.

4.4 Technology Considerations

Our project consists of multiple components that help integrate the two main components of our
design: object detection and mobile app development. We use Google’s app development tool
Flutter, which can be compiled to run on an Apple iPhone, Android mobile device, or mobile
emulators. However, due to compatibility issues with the Ultralytics plugin, we have prioritized the
IOS platform for our application. Flutter uses Dart for an accessible widget-based design. Flutter’s
plugin functionality allows a smoother cross-platform development when utilizing device
components such as the camera. Using Flutter, we can satisfy our technical challenges of developing
an aesthetically pleasing and accessible user interface with an Ultralytics backend.

Integrating into Flutter’s backend, we use the Ultralytics-Flutter plugin to track the softball in the
camera frame via machine learning. There exist many sports ball tracking systems currently on the
market. However, these systems typically guarantee accuracy with a multi-camera setup with
expensive, high-quality cameras. Our design accommodates local league use with a camera on a
mobile device. With a singular camera on the field providing one plane of vision, our application’s
accuracy relies on precisely detecting the softball within a camera frame. We do this using a custom
trained YOLO model, which detects an object using machine learning. With our machine learning
approach, we can use known heights provided during calibration to calculate the height using the
ball coordinates returned from the YOLO model.

4.5 Design Analysis

Using our machine learning based design, we have been able to fully integrate our object detection
and height calculation methods into our app. The Ultralytics plugin allowed for a seamless
integration of our YOLO model into our Flutter environment. Currently, our app is able to create
the pixel conversions we need to calculate height using provided known height values, our YOLO
model then tracks the ball and returns the coordinates where it was found, and we use those
coordinates in our height calculation to return the height of the ball. With this design, we have
confirmed that it is possible to determine the height of the ball using a single camera.

From here, further refinements of our machine learning model are needed to account for the
various conditions that can be present during a softball game. Currently, our model provides
accurate results under ideal conditions, but we want to ensure that our users can utilize our app
under all conditions. Specifically, our model occasionally detects objects that are not softballs,
meaning that the model is either overtrained, or is not trained well enough. Through model
refinements and further training, we expect that our app can be completely functional under all
conditions. We also need to ensure the efficiency of our app. The YOLO model does require
reasonable computation power, which has revealed issues when doing things like screen recording
the phone while running our app, which often results in crashing. While this is a specific scenario,
we aim to take these issues into account so our app can run as expected without reduce the
performance of other aspects of the device.



5 Testing

5.1 Unit Testing

Our solution is primarily software based; this implies the necessity for proper unit testing for each
separate piece of functionality within our code. Because our main solution functionality is divided
among two separate technical areas, the Flutter frontend and our tracking backend, unit testing is
treated differently between the two implementations.

Within our frontend, unit testing occurs with each individual “widget”, or visual component of our
user interface to ensure items appear correctly on screen from our mobile application. This testing
ensures that the user experience of our app remains consistent and that there is a high ease of
access for users. It also ensures that data is properly being accessed within our application between
components to ensure accuracy. In terms of the tools used for unit testing within our frontend,
Flutter comes bundled with real-time debugging tools, useful for diagnosing and troubleshooting
problems that occur when running an app. These tools can be accessed via a locally hosted interface
accessible upon starting the Flutter app.

For testing the backend, we focused on the performance of our machine learning model. To test
this we started by reserving sections of our prepared dataset for testing and validation. When the
model goes under training, it takes a subset of the training frames from our dataset, trains on those
frames, then runs the model against a subset of validation frames. This process was completed over
a series of 400 epochs. Once the model was done training, we ran it against the testing frames to
verify its performance. Further testing was done once the model was integrated into our app.
Initially, we added a shortcut to the model within our app that bypassed the calibration section.
From there, we were able to run the model directly to verify that it was able to function within our

app.
5.2 Interface Testing

The interfaces included in our design include the user interface built within Flutter along with the
communication between the Ultralytics-Flutter plugin and the Flutter side. The graphical user
interface was testing by running our app and ensuring that all of the widgets were behaving as
expected. We also verified that certain function calls were being entered by adding print
statements within the functions that were displayed via the Flutter debugging output. For the
Ultralytics plugin, we were able to directly integrate the plugin within our app, so no external
communication was necessary. The Ultralytics plugin was verified for correctness with the
aforementioned model shortcut, along with print statements being added where necessary. As
there was no external communication between Flutter and the plugin, just being able to run the
model showed that our interfaces were behaving properly.

5.3 Integration Testing

The main focus of our integration testing was ensuring that we were able to use our model after
performing the calibration. To verify this, we first displayed the calibration values after setup via
the debugging output. This confirmed that our initial values were being initialized correctly. After
calibration, the app moves to the actual tracking screen which utilizes the Ultralytics plugin. We
then printed out the setup values in that screen to confirm that the calibration values were being
passed to the tracking screen properly. Next, we ensured that the model itself ran properly after
moving to the tracking screen by displaying a red dot if it detected the ball. With these steps, we



were able to ensure that the integration between Flutter and our machine learning model behaved
as expected.

5.4 System Testing

We performed system testing by using our app in a realistic environment. To achieve this, we went
out to the recreational softball fields, where we mounted a phone on a tripod and ran our app.
From there, we verified that our app functioned normally. In addition to Flutter’s reloading
capabilities, we were able to make small corrections to the code where needed and reload our app
while it was running to verify correctness. Based on the results we gathered from each testing
session on the field, we were able to make modifications to our code to mitigate issues that arose
during testing. After fixing any issues, we went back out to the field to test further.

During testing, we also verified our height calculation algorithm by holding the ball at a known
height. With the known height, we could observe the height that the model returned and verify
that what the model returned was correct. As we stored and displayed the setup values that are
used in our height calculation, we were able to easily make adjustments based on what the model
was outputting.

5.5 Regression Testing

The main focus of our regression testing was based on changes we made to our machine learning
model. As Flutter is modular by design with the widget-based implementation, it was easy to make
changes to the Flutter side without changing large sections of code. For the machine learning
model, the Ultralytics plugin made it easy to specify what model we wanted to use. So, as we made
further refinements to our model, we were able to easily plug-in the new model and verify its
correctness by testing our app on the field.

5.6 Acceptance Testing

To verify the correctness of our system, we based it on our design requirements. With our
requirements, we could easily tell if our app was providing accurate results. Specifically, we wanted
our app to be easy to set up as well as the illegal call being faster than a normal umpire with an
height accuracy being within +4 inches.

To ensure this, we have members of the ISU softball team use our app to see how easy the setup and
use of our app would be for someone who has never used it. This ensured that we had an unbiased
opinion of our app along with accounting for any potential user errors that we missed. Finally, we
were able to verify our height calculation by holding the ball at a known height.

5.7 Results

Based on our testing, our app functions very well based on our requirements. Our app is able to
detect the height of the ball in a +6 inches, which is not within our desired range; however, future
refinements of our machine learning model would likely move the detected height within our
desired range. Next, our app was able to detect and call an illegal pitch in .22 seconds, which is just
above our desired goal of .2 seconds. Finally, for ease of use and setup, the ISU club softball
members stated that the setup of our app was simple, and that they would trust a system like this to
be used during actual softball games.



While our end metrics don’t quite meet our previously set goals, we believe that with further
training of our machine learning model, the performance of our app should fall within our desired
goals. In the end, we feel that we created a successful implementation of the desired product.

6 Implementation

Object Detection:

For our final deliverable we settled on utilizing only a YOLO model for object detection. We were
able to solely rely on the model because we were able to integrate the Ultralytics Flutter plugin into
our app which allowed us to utilize the iPhone CoreML hardware. By taking advantage of the
phone’s dedicated hardware for ML tasks, model inference speeds were quick enough to rely on it
for tracking and detection.

Pitch Detection:

As mentioned in 4.3.2, we first detect when a pitch is thrown before deducing if a pitch is illegal. We
do this by creating a bounding box around the pitcher’s mound and triggering our tracking only
when a ball is thrown after the pitcher is holding the ball within the bounding box for 2 seconds.
Additional logic for our pitch detection and system arming can be found in section 4.3.2.

Height Detection:

As mentioned in 4.3.2, we implemented our height calculation to use the coordinates of the ball,
home plate, and a known reference height, using coordinates from the YOLO model, to convert
pixel height to a height in feet.

We observed in the image below, that when we horizontally align the pitcher’s mound and the
home plate within a camera frame, that the vertical pixel-to-feet ratio is constant. Each green line
represents a reference height, measured on both the pitcher’s mound and home plate, and
connected by the green line. The distance between each line is one foot, and the pixels between
lines remain constant for each new height.

Using this knowledge, we can calculate the average pixel length from the known reference height
and the home plate, calculate the pixel height of the ball, and convert the pixel height to a height in
feet. When the maximum height of the pitch is found, we can then determine if the pitch is illegal
using the maximum and minimum height values.



S I IR S A -

.l . |
.'l‘; 'll‘r[-'-

WM C I pi 1)
I e | g e

Screen Development:

Our application contains multiple screens that flow from an initial application landing page to the
main camera screen as pictured below. These screens include:

Landing Screen: acts as an initial screen which is presented to the user. This is the root of
the application and is where the user starts navigation.

Instructions Screen: instructs the user on the method of calibration that is essential for
our applications functionality. This screen includes information as well a guided visuals on
how to properly calibrate our application on the following screen.

Setup Values Screen: the user inputs a reference height (usually the height of a player or a
known-length object) as well as maximum and minimum ball thresholds.

Calibration Screen: a series of timed camera screens that are used to obtain ball
coordinates as well as reference height points for height calculation.

Camera Screen: displays the currently tracked softball as well as other information
essential for an end user to discern the height-tracking capabilities of our application.

The implementations of these screens as well as visual references to them can be viewed under
appendix one below.

Hesght: 4.88
Yaolo: (188, T02)
Max HMeight: 0.00







7 Ethics and Professional Responsibility

7.1 Areas of Professional Responsibility/Codes of Ethics

Area of
Responsibility

Definition

IEEE Item

Team Interaction

Work Competence

Perform professional,
high-quality work

“To seek, accept, and
offer honest criticism
of technical work, to
acknowledge and
correct errors...”

The team focused on
this area by
developing solutions
and experimenting
with modern
technologies to ensure
we create the best
solution.

claims or estimates
based on available
data..”

Financial Deliver reliable “To be honest and Our design choices
Responsibility products that are realistic in stating are based on usability,
reasonably priced claims or estimates such as having the
based on available app be free and not
data..” requiring an
additional camera,
which upholds this
area.
Communication Report truthful work | “To be honest and We have upheld this
Honesty to shareholders realistic in stating area by meeting

weekly with the client
and frequently
communicating our
progress and design
choices.

of others

the contributions of
others..”

Health, Safety, Minimize “To hold paramount The team wanted to
Well-Being shareholders’ health the safety, health, and | minimize injury risk
and safety risks welfare of the during the setup of
public..” our product, which
helped lead us to our
app-based solution,
which eliminated the
need to set up
multiple cameras.
Property Ownership | Respect the property | “To credit properly We followed this area

by acknowledging the
individual
contributions of the
team and by
collaborating on
different areas of the
project so multiple




members could gain
knowledge in multiple
areas.

Sustainability

Protect environmental
and natural resources

“To strive to comply
with ethical design
and sustainable
development
practices..”

We focused on this
area by making our
app cross-compatible
and usable on
multiple iterations of
phones, meaning our
users will not need to
continue to purchase
new devices to use
our product.

Social Responsibility

Make products that
benefit society

“To improve the
understanding by
individuals and
society...”

Our team has a
responsibility to
produce accurate data
and to better the
experience of rec
league slowpitch
softball players and
umpires, so we
focused on making
our solution easy to
use and available to
slowpitch leagues.

Best Area of Responsibility; Social Responsibility:

We have chosen to approach this standard by designing our project to prioritize affordability,

portability, and easy accessibility for local communities to have access to simple officiating

assistance. Although this further complicates our software tracking model, it simplifies the

application for the community. This decision in our development was ethically driven with the

community in mind rather than solely for efficient development.

Worst Area of Responsibility; Sustainability:

We haven’t been prioritizing the efficiency and runtime of our code up to this point as we're trying

to get prototypes working, which could result in more power consumption and more contribution

to negative environmental impacts. Our team plans on working to not only write code but to refine

it to be as efficient as possible. Thus reducing the amount of power needed to run our app.




7.2 Four Principles

free which
eliminates the
need to purchase
expensive
tracking
equipment.

to perform all of
the tracking
helps us keep the
app free because
we can forgo the
cost of an
additional
camera.

their own choices
on whether or not
to use our app or
not, which gives
them control over
any economicals
adjustments it my
require such as a
league phone to
use the app.

Beneficence Nonmaleficence Respect for Justice
Autonomy
Public health, | Our product We are avoiding | We allow users to Our app will
safety, and aims to improve | using multiple store past pitches, | provide
welfare the state of rec cameras which so they can make unbiased, real
league softball reduces risk their own decisions | data to help
games, which during setup and | based on officiate games,
benefits the improves the non-subjective which will
enjoyment of usability of our data, improving improve the
everyone product. the enjoyment of fairness of the
involved. the game. game.
Global, Promotes fair Keeping our Since the height The height range
cultural, and | play by providing | solution focused | range of our app customization of
social an objective tool | on a single will be our app will
for measuring device allows a customizable, allow multiple
pitch height, normal game of | different cultures leagues with
which will softball to play and leagues can set | different rules to
reduce normally without | up the app to work | improve the
arguments disrupting the for their needs. equality of how
between players | existing league the game is
and officials. culture. called.
Environmental | Focusing on Avoiding Our product allows | Our app will be
developing our multiple cameras | users to choose to | able to be
project on a allows our users | use their existing utilizied by all
phone reduces to use an existing | phone instead of leagues, even
the need for phone instead of | making more ones with limited
multiple tracking | having to pay environmental resources. This
cameras and ship a new impacts by paying | keeps them form
benefitting the camera. for more cameras. | needing to invest
environmental in other cameras
impact. that may
contribute to
environmental
damage.
Economic Our solution is Using one device | A league can make | The free price

point of our app
allows a wide
range of leagues
with different
financial
backgrounds can
utilize our app to
improve the
league.




Area We Focused On; Public health, safety, and welfare X Beneficence:

We are aiming to improve the enjoyment of the game. We plan to achieve this by ensuring simple
setup for umpires, returning accurate data so the right calls are constantly being made, and being
configurable for different height ranges so it can be used by a variety of leagues.

Area of Improvement; Environmental X Respect For Autonomy:

Based on the result of further testing, we may end up needing to restrict our app to only work on
phones with a certain camera quality. Older phones with worse may not be able to provide the data
needed for accurate tracking. This could result in leagues without immediate access to a high
quality phone having to purchase a new device through shipping methods that contribute to
environmental damage.

We plan on overcoming this negative aspect by ensuring our app can run on phones that are widely
available and already owned by a majority of people. This will keep the availability of our app high
and will reduce the need to purchase a new device.

7.3 Virtues

e Accuracy

o We strive to provide accuracy for our users, as it is important for illegal pitches to
be called correctly so as to not cause distress between players, officials, and fans.

o We will achieve this virtue by continuously refine our ball tracking code and
provide easy-to-use calibration steps so our app can be calibrated to fit the needs of
each field.

e Empathy

o Our app is solely focused on bettering the game for players, officials, and fans. We
want to ensure that we are always prioritizing their needs over what makes it easier
for us.

o Communicating our design choices with our client and collecting feedback from
testing are how we will ensure that we are always taking user needs into account.

e Innovation

o We want our product to be easily integrating into existing leagues. So, we are
innovating a single camera design approach that will make it easy to set up without
the needs for multiple cameras.

o  Constant prototyping and research into different tracking methods will help keep
us engaged with new ideas and strategies as to how to improve our single camera
solution. Current team innovation like or height line system are already helping us
improve our height detection methods.

Each team member should also answer the following:

e Identify one virtue you have demonstrated in your senior design work thus far? (Individual)
o Why is it important to you?
o How have you demonstrated it?
e Identify one virtue that is important to you that you have not demonstrated in your senior
design work thus far? (Individual)
o Why is it important to you?



o  What might you do to demonstrate that virtue?

Andrew

o Demonstrated Virtue: Open-mindedness

Throughout the project, I consistently researched new and more effective

ways for our team to track softball. As our project constraints evolved, I
adapted my approach to object detection accordingly. For example, after
spending time developing a solution using OpenCV, I discovered the
Ultralytics plugin, which allowed us to run a YOLO model on the phone
with fast enough performance to handle both detection and tracking. Even
though this made much of my earlier work obsolete, I was willing to pivot
and focus on learning how to integrate the new approach because it was
ultimately better for the team and the project.

This virtue matters to me because in software engineering, nothing stays

static, tools, requirements, and best practices change constantly. Being
open to new ideas, even when it means moving on from something you've
already invested in, is critical for building the best possible solution.

o Non-Demonstrated Virtue: Communication

Casey

Communication was one virtue that I find very important even though I

may have not been the best at it during this project. I often got deep in the
weeds of researching and experimenting with different object detection
technologies but ended up failing to fully communicate what [ was doing
and why. Communication is important to me because no matter how good
the technical solution is, it doesn't matter if the rest of the team doesn't
understand it or can't efficiently work with it or integrate it with the rest of
the application.

Moving forward, I plan to be more intentional about communicating

decisions, updates and reasoning behind changes, by summarizing key
shifts in meetings and documenting decisions in shared notes.

o Demonstrated Virtue: Persistence

[ have primarily been able to aid in code refactorization, Ul revamping,

and testing this past semester. I feel that my contributions aided in the
success of our project despite various roadblocks that may have occurred
along the way.

This virtue is important to me as being able to balance project needs with

other work, study, or personal needs is critical to the success of a project.

o Non-Demonstrated Virtue: Communication

[ feel that this semester my communication wasn't as effective as it has

been in the past. There were times with work, studies, and other



Sully

circumstances that caused me to regrettably fall behind on some
important decisions; this caused miscommunication and error in my work
when certain features were being worked on in parallel, for example
causing certain feature changes to become obsolete in the face of new
features being pushed out.

Ultimately, this was a learning experience for me, and I am confident in

our final product and my ability to communicate effectively in the future. I
will continue to work on asserting myself in team spaces to ensure my
progress aligns with others.

o Demonstrated Virtue: Persistence

With any project, there are bound to be roadblocks that come up that

prevent progress. [ believe it is essential that [ am persistent in attacking
these roadblocks and continuing to experiment so that we can solve our
problems.

I demonstrated this virtue by continuing to attempt to integrate our C++

code into the Flutter app. There have been many issues with the
integration, mainly stemming from the OpenCV libraries having issues
running on i0S, and I need to persist through this issue so we can
complete our app. While I haven't been able to fully integrate the code yet,
I have made good progress through the OpenCV tracking framework for
iOS I helped create.

o Non-Demonstrated Virtue: Adaptability

Cameron

We are utilizing many different technologies in the making of our app. So,

it is important that I become familiar with the all of the technologies we
are using, so I now how all of the components work together in detail.

[ will demonstrate this virtue by pairing with other team members who are

working on different areas and learning how they developed their ideas so
I can help with issues in the future.

o Versatility

This project has brought me outside of my comfort zone numerous times

and required me to do things I have no experience with. Learning flutter
and all of the ML topics was new to me and forced me to go outside my
current knowledge to complete the tasks.



= This is important to me because it is a necessity in the workforce. New

technologies are constantly popping up, so a good engineer must be able
to adapt to these new technologies and learn how to best use them.

o Communication

= I felt like this semester, [ wasn’t always communicating well with my team

and that hurt my work. With better communication I would be able to
work through issues quicker and help the engineering process as whole.

= Hopefully, I'll be able to attend the weekly meetings next semester which

will help immensely. Other than that, I just need to be more willing to
reach out to my teammates for help and to keep them updated on my
progress.

e FEthan

o Demonstrated Virtue: Diligence

»  Throughout working on this senior project I felt I showed the virtue of

diligence by persistently achieving weekly goals. I did this by making
weekly update presentations for our advisory and team to outline our
contributions for the week, the current integration of our components,
and the steps we must take to move forward. Diligently staying updated
with my team and planning for the future was my strongest virtue I
showed in this project.

o Non-Demonstrated Virtue: Conviction

*  During many of the project’s life cycle there were times where I believe

something wasn’t working effectively or there was an issue with the team’s
development cycle. However, many times I did speak up to these issues.
My actions and communication between the group occasionally did not
align with my beliefs and I should have spoken up about issues within our
project and showed conviction to stand up for what I believe was right. I
will work on speaking up in groups and being direct in my thoughts of
situations that arise during development cycles.

e Josh

o Demonstrated Virtue: Creativity

= One virtue [ feel like I demonstrated pretty well during this project for the

most part was creativity, and coming up with different and unique



solutions to some of our problems we were having within the group. We
had quite a few problems and issues as a group, on top of just individually,
but I felt like I did a good job at thinking of creative ways to come up with
a solution to our project and different small problems.

e Non-Demonstrated Virtue: Persistence

*  One thing I struggled with personally on this project was finding the

strength and strategies to push past some of my or our team's struggles. I
obviously tried my best to get past some of these struggles, but I still felt
like I was stuck on a wall at some parts of the project and even with some
creativity some lack of solutions definitely demotivated me a little bit.
Additionally, sometimes I wasn’t sure in what direction I could help the
project in at certain times, and I definitely tried improving this part of
myself during most of this project to get to a point where I'm confident I
can fix these issues to be less of an issue in the future.

8 Closing Material

8.1 Conclusion

We were able to fully integrate the three main parts of our project laid out from the first semester.
This included the object and tracking functionality, calculations for determining the height of the
pitch and a full app design. We ended up pivoting from using C++ code in our app since it caused
performance issues while running Flutter and we found a better way to integrate the YOLO model
into our app that allowed us to take advantage of the CoreML architecture on newer iPhones. By
utilizing the ML architecture we were able to massively improve inference speeds to the point where
we no longer needed OpenCV’s tracking modules further reducing our need for running C++ code.
Unfortunately though due to time constraints and issues with translating our trained YOLO model
to a format compatible with Androids ML architecture we were unable to make our app cross
platform. In the future if another senior design group ends up working on our project they will
need to focus on training a more refined version of our YOLO model, translating it to a format
compatible with Android and performing more exhaustive testing.

8.2 References

[1] “C Interop using Dart:FFI,” Dart, https://dart.dev/interop/c-interop (accessed Dec. 7, 2024).

[2] “Required packages,” OpenCV, https://docs.opencv.org/4.x/ds/da3/tutorial_ios_install.html
(accessed Dec. 7, 2024).

[3] “Material library,” material library - Dart API,
https://api.flutter.dev/flutter/material/material-library.html (accessed Dec. 7, 2024).



9 Team

9.1 TEAM MEMBERS

Ethan Gruening
Casey Gehling
Sullivan Fair

Josh Hyde
Cameron Mesman
Andrew Vick

9.2 REQUIRED SkiLL SETS FOR YOUR PROJECT

App Development
Flutter Framework
Machine Learning
Yolo/Ultralytics

I0S Development

9.3 SkiLL SETS COVERED BY THE TEAM

Ethan Gruening: App Development, User Testing, Android Studio Emulation
Casey Gehling: App Development, Flutter

Sullivan Fair: App Development, Frameworks

Josh Hyde: Flutter, App Development, Testing, Android

Cameron Mesman: App development, Flutter, C++

Andrew Vick: App development, ML training, Swift, Flutter
9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM
o Agile

9.5 INITIAL PROJECT MANAGEMENT ROLES

Team Organization: Ethan Gruening

Client Interaction: Casey Gehling

Machine Learning Integration: Andrew Vick
Individual Component Development: Sullivan Fair
Research: Josh Hyde

Testing: Cameron Mesman



9.6 Team Contract

Team Name sdmay25-11

Team Members:

1) Andrew Vick 2) Casey Gehling
3) Cameron Mesman 4) Joshua Hyde
5) Ethan Gruening 6) Sullivan Fair

Team Procedures
Day, time, and location (face-to-face or virtual) for regular team meetings:
1 pm every Wednesday (possibly)

2 pm every Monday with advisor (Dr. Fila)

Preferred method of communication updates, reminders, issues, and scheduling (e.g.,
e-mail, phone, app, face-to-face):

Discord

Decision-making policy (e.g., consensus, majority vote):

Majority Vote

Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):

Andrew Vick will record meeting minutes, which will be stored in a document on our drive, and I
will send a message in Discord for that meeting.

Ethan Gruening will record meeting notes, which will be stored in a document on the team’s shared
drive.

Participation Expectations
Expected individual attendance, punctuality, and participation at all team meetings:

We are expected to attend, share, and be on time for all meetings



Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

Everyone is expected to meet deadlines, make meaningful contributions to the project, and be on
time.

Expected level of communication with other team members:

Everyone is expected to be active in the discord and respond to teamwide questions within one
business day.

Expected level of commitment to team decisions and tasks:

Everyone is expected to be committed to team decisions and tasks. This extends to actively
engaging in discussions and conveying your ideas.

Leadership

Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):

Team Organization: Ethan Gruening

Client Interaction: Casey Gehling

Machine Learning Integration: Andrew Vick
Individual Component Development: Sullivan Fair
Research: Josh Hyde

Testing: Cameron Mesman

Strategies for supporting and guiding the work of all team members:

Weekly standup meetings where we discuss the week's events and ensure everyone is keeping up
with the workload.

Strategies for recognizing the contributions of all team members:

During weekly standup every member will share what they worked on and any information they
found regarding the development of our product. This allows every member to share their
contributions and receive feedback.



Collaboration and Inclusion

Andrew Vick, Software Engineering. Some of my relevant skills include C/C++, Python, and IoT
devices. Most of my experience has come from personal projects for instance, using Python, I
created my own virtual assistant.

Casey Gehling, Computer Engineering. Relevant technical skills are Embedded Programming,
Networking, Fullstack Development, and UI Design. Additionally, I have relevant experience in
client communication and requirements gathering.

Sullivan Fair, Software Engineering. Relevant skills include general coding knowledge of Java, C, C#,
Python, JavaScript, AWS knowledge, GIT, and cybersecurity knowledge.

Ethan Gruening, Software Engineering. My relevant skills include, but are not limited to, Python, C,
Java, JavaScipt, and AWS. Most of my projects/experiences involve user interphases, I/O devices,
and API service integrations.

Josh Hyde, Computer Engineering. My relevant skills are generic coding in C/C++ and Java, and
some database work with MySQL. I also have been in different groups before and have had to work
together towards a common project goal.

Cameron Mesman, Computer Engineer. My relevant skills are coding with C and Java. I have
experience programming embedded systems, app design (backend, frontend, and database
languages), and computer architecture.

Strategies for encouraging and supporting contributions and ideas from all team members:

Goal-Setting, Planning, and Execution

Team goals for this semester:
Create a full implementation of our app

Perform user testing

Strategies for planning and assigning individual and teamwork:

During team meetings, we will identify what needs to be worked on for the week. From there, we
will assign who tackles which task based on their expertise.

Strategies for keeping on task:

Weekly goals and check-ins



Consequences for Not Adhering to Team Contract

How will you handle infractions of any of the obligations of this team contract?

In the event of an infraction by a team member, the team as a whole will reach out to the member
to see why they aren’t adhering to our contract.

What will your team do if the infractions continue?

If the infractions continue and we cannot resolve the issue internally, we will finally reach out to
Professor Fila regarding the member.

B e

a) I participated in formulating the standards, roles, and procedures as stated in this contract.
b) I understand that I am obligated to abide by these terms and conditions.
¢) [ understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) Sullivan Fair DATE __09/18/2024________
2) Andrew Vick DATE __09/18/2024__
3) Casey Gehling DATE __s5/1/2025___

4) Ethan Gruening DATE __ 5/1/2025__
5) Josh Hyde DATE _ 4/28/2025_

6) Cameron Mesman DATE __5/1/2025




Appendix 1: Instruction Manual
1. Open the app

a. The user will see the Home page with a ‘Start’ button

Pitch Snitch

2. Click ‘Start’

a. The user will move to the instructions screen with details on how to properly set

up the camera and calibration

wil = ED

4 Setup Camera Instructions

Our Accuracy Relies On A Proper Setup
Step 1: Place The Camera

lace your camera following the
pecifications below:

Must have the home plate and
pitcher's mound in camera view.

Home plate and pitcher's mound
must be horizontally aligned.

Must be eguidistant from the home
plate and the pitcher's mound.

Must be protected from potential
damages beyond the foul line.

3. Click ‘Done’

Setup Camera Instructions

Our Accuracy Relies On A Proper Setup

Step 1: Place The Camera

Step 2: Capture The Field

‘ou will mark three points of the field with

he softball
The softball should be placed on
home plate

The softball should be held at the
reference height above home plate

The softball should be placed on
the pitchers mound.

ach capture will be taken with a 15
second countdown. Move the softball
during the countdown process.

Back




a. The user will be presented a screen to input their desired calibration values

< Setup Values

Define the height boundaries
for pitches and the reference
height to be used in field
calibration

Max Height

12

Min Height

6

Ref Height

6

4. Click ‘Start Calibration’
a. The user will be prompted to place the ball at three positions: on home plate, held
at the reference height, and on the pitcher’s mound
b. There will be a 15 second countdown before each picture is taken

5. After the calibration process, the user will be taken to the tracking screen
a. From here, the app is fully set up and the camera should not be moved as it would
compromise the calibration
b. The ball needs to be in the bounding box for two seconds for the system to arm
itself



Height: 4.68
Yodo: (185, 702)
Max Height: 0.00

.""-- T —T—




Appendix 2: Design Considerations

The team was able to create a working implementation of our app. However, there are certain areas
of our design that we know can be improved upon in future work. These areas include the YOLO
model, testing height accuracy, system stress testing, and adding a review section for past pitches.

First, our YOLO model is very one dimensional, meaning that it is trained in only a single lighting
conditions in an ideal scenario. While we added augmentations to the images to make the model
more robust, it likely isn’t enough to cover the various lighting conditions that can be seen during a
softball game. Training the model on a more diverse dataset will help make it more well-rounded
for a variety of game conditions.

Next, further testing should be done on the height calculation. We currently have an accuracy of +6
inches; however, because this is the core part of our app, more testing needs to be done to ensure
that the range is consistent. Further training of our YOLO model will also result in more testing
being needed for the height calculation as the accuracy of the model can directly affect the height
calculation.

Third, our system needs to be fully stress tested. We tested in pretty ideal conditions this semester
to ensure the core functionality of our app would work in practice. That being said, more rigorous
testing needs to be done to ensure users are not able to break the app. Rigorous stress testing will
allow for unknown bugs and errors to be found as the app is pushed to its limits. These kinds of
tests could include placing the camera in non-ideal positions, having drastic lighting changes occur,
or having multiple softballs in frame at a single time.

Finally, we would have liked to have a feature where users could go back and review past pitches
and how they were called. With a “machine” umpire, users will likely want a way to verify what the
app saw and see if it is correct. Having a past pitches screen would allow for users to go back and
review the app's performance and ensure that it is providing accurate results. However, due to
current limitations with the Ultralytics-Flutter plugin’s proprietary camera controller, we were not
able to add it successfully.



Appendix 3: Alternate Designs

Throughout 491 and 492 we implemented many different prototypes to test the functionality of our
application. Through testing and future development, the alternative design prototypes were
overwritten or discarded from the final deliverables. It is important to note the designs that failed,
and those that are now incompatible as they are a part of the design process and were a part of
successful developmental cycles by leading our project in more effective direction.

OpenCV and KCF Tracking

In the planning phase of our development, we valued the accuracy of a system that integrates both
machinelearning and non-machine learning techniques for object detection and object tracking.
We developed multiple softball tracking prototypes that utilized the integration of OpenCV and
YOLO tools to efficiently compute where a softball is located within a frame while restricting our
reliance on machine learning models.

OpenCV is an image processing library for Python and C++ which can use multithreaded
approaches to quickly analyze an image for specific colors, textures, and patterns. OpenCV also
offers tracking modules which identify a moving object in frame, such as the KCF tracking
algorithm.

In prototypes that were disconnected from the Flutter application, the OpenCV and KCF tracking
tools performed very well when finding the softball by color, but could often not initially find the
ball. The YOLO model, with a higher runtime and reliability, was able to initially find the ball and
routinely check the OpenCV and KCF algorithms are still tracking the softball every 30 frames as

shown below.

Frame
OpenCV KCF

The YOLO model used within this prototype was a trained on a small collection of images where
the softball was within 3 feet of the camera and indoors. This training data was too small and did
not fit our application’s true environment to train an effective model. As our development

Every 30 frames
OR
OpenCV fails

continued, we collected and annotated over 9,000 images in a new YOLO model, which performed
at 3ofps and had very accurate tracking results. The machine learning tracking outperformed the
non-machine learning OpenCV and KCF algorithms and led us to focus on a machine learning
object tracking system. Although the integrated tracking system was removed, it taught us the
importance of replicating training data to the system’s environment to better utalize modern
computer vision tools.



C++ Flutter Bridge

During the initial integration of our softball-tracking solution into our Flutter application, we were
researching potential ways to create the bridge between our original C++ backend running OpenCV
and our Flutter frontend. We had experimented with Dart FFI, a native Flutter library capable of
interacting with C++ code from the front end of our application. We had made progress with
constructing this bridge, even reaching the point where our model was callable from our front end
returning with ball coordinates, albeit this process introduced much latency hindering the user
experience of our application. We managed to obtain frames of real-time tracking which
dramatically fell short of our project requirements, taking minutes to return each coordinate from
the backend.

Our team attempted to reconstruct our application’s communication between the frontend and
backend and mitigate our CPU consumption by multithreading, passing memory pointers instead
of images, and decreasing the image size. Ultimately, as we began to adopt a solution revolving
around using the Ultralytics plugin to allow for automatic camera handling and pipelined model
processing. The C++ backend prototype was removed as a underperformant alternative to the
Ultralytics plugin. Although this prototype was removed from future development, it gave our team
a chance to further investigate our app’s CPU usage and analyze performance issues.

Past Pitches Screen

Originally, our application included recordings of past pitches as
they transpired within a softball game. This was done by using & Review
Flutter’s CameraController class to record from the camera and
save the video within the application with an indication of
“Illegal” or “Valid”. The users could then click the “Past Pitches”
button on the camera screen to view the last pitch.

Walid

However, after adopting the Ultralytics plugin that used its own
CameraController, it became difficult to refactor this feature since
only one CameraController can be active at one time. Regaining
access to the camera for the Past Pitches screen without heavily

modifying the underlying source code revolving around the

Ultralytics plugin would be too invasive to the library and remains T

an incompatible feature.

The Past Pitches screen prototype still encourages our team to
find a way to communicate data from previously analyzed pitches
to the user. With video unavailable, our team has discussed the
opportunity to include graphs of the coordinates throughout the Weogal
pitch, detected by the model, paired with lines indicating the >
maximum and minimum height requirements.




Appendix 4: Code Analysis

There are many directories in our code repository necessary for the Flutter framework. However,
the bulk of our development lies in the ‘lib, ‘ultralytics_yolo’ and ‘assets’ folders.

v SDMAY25-11

v softball_tracker
> android

assets
> builo
ios
lib
> linux
macos

test

> ultralytics_yolo

web

windows

.metadata
analysis_options.yaml|
devtools_options.yaml
flutter_01.png
pubspec.lock
pubspec.yaml
README.md
> tracking
.gitignore
README.md

The assets folders contain the different YOLO models we trained, images, and the mp3 for the
illegal audio. The best models we obtained from our training were the ‘bestv8-img640.mlmodel, a
YOLOv8n model, and the ‘best-yolotis.mlmodel, a YOLOvuis model.

v assets
> images

> sounds

> videos

= best_float16.tflite
best_float32.tflite
best-yolo11s.mIimodel
best-yolo11s.pt

best.mimodel

best.onnx

bestv2_int8.tflite
bestv2-img640-noNMS.mimodel

bestv2-img640.mimodel

bestv2.mimodel

bestv2.pt
custom-softball-tracker.mimodel
custom.mimodel

metadata.yaml
yolo11n-obb.mIimodel
yolo11s.mimodel

yolo11s.pt

yolov8n.mimodel




For lib, that contains the various screens including the home page, instructions, calibration, and
tracking screens. Main.dart routes the user to the various screens of the app. Setup.dart does the
same things as main.dart, but for once the user enters the setup of the tracking. The rest of the
.dart files in the views folder represent the various screens a user will interact with when using the
app. Yolo_screen.dart is the screen where the tracking of the softball is performed. The widgets
folder contains assets like buttons that can be plugged into various screens. This is one of the main
benefits of the Flutter framework.

v lib
> utils
v views
> setup
instructions_screen.dart
past_pitches_screen.dart
settings_screen.dart
start_screen.dart
yolo_screen.dart
yolo_video_screen.dart
v widgets
action_button_widget.dart
camera_preview_widget.d...

expandable_fab_widget.dart

expandable_stepper.dart

image_marker.dart

record_phase_indicatior.dart

video_thumbnail_widget.dart
main.dart

setup.dart




Finally, the ultralytics_yolo folder contains the entire Ultralytics-Flutter plugin that we included
locally in our repo. The plugin is open-source, and because we needed to make some
customizations to the code for it to work for our desired camera orientation, we copied it locally
and made changes.

v ultralytics_yolo
>
> android
> ios
v lib
> camera_preview
> predict
ultralytics_yolo_platform_...
ultralytics_yolo_platform_interf...
ultralytics_yolo.dart
yolo_model.dart

analysis_options.yaml

= pubspec.lock

pubspec.yaml




