

 Our senior design project focuses on developing a system to assist umpires in detecting illegal
 pitches in slow-pitch softball games. The problem arises from the challenge of accurately
 determining whether a pitch falls outside the legal bounds of 10 to 12 feet in height, leading to
 inconsistent calls and disputes. Our solution aims to eliminate this ambiguity, allowing umpires to
 focus on other aspects of the game while ensuring fairness and accuracy.

 To address this issue, we are designing a mobile application that leverages computer vision and
 machine learning to analyze softball pitches in real-time. This approach removes the need for
 leagues to invest in expensive or specialized hardware, making our solution cost-effective and
 accessible to a wide range of users. The app uses YOLO (You Only Look Once) for object detection
 and tracking, enabling it to identify the softball and monitor its trajectory throughout the pitch.

 The key design requirements include accuracy in determining pitch legality, minimal interference
 with the flow of the game, and affordability for users. Feedback from current umpires has validated
 these priorities, and our design aligns with their expectations.

 Thus far, we have implemented the YOLO model to run within our Flutter application using a
 plugin developed by the Ultralytics team. Due to the plugins limited functionality though we had to
 alter it to better fit our needs. Additionally, we have developed calibration functionality that allows
 the user to define key reference points—such as the pitcher's mound and home plate—and input
 the camera's height. This calibration maps the physical space into a frame of reference, enabling
 precise height calculations for the pitch and determining whether it is legal.

 Our design meets the defined requirements by ensuring the app runs smoothly on readily available
 iOS devices, avoiding the need for additional hardware. Accuracy is achieved through rigorous
 training of a YOLO model and strict setup instructions. The next steps include adding additional
 features to our app outside of the main functionality, like a past pitches screen.

 By enabling umpires to confidently identify illegal pitches, our product aims to improve the quality
 and fairness of games while maintaining accessibility and usability for all levels of softball leagues.

 Learning Summary

 Summary of requirements:

 - Object detection system to locate a softball at its maximum height during a
 pitch.

 - Detect an illegal pitch when a softball’s maximum height is higher than the
 specific maximum height or below the specific minimum height.

 - Create an audible sound indicating an illegal pitch.

 - The device cannot be physically obstructive to the game.

 - The device must accommodate different fields, lighting, and balls.

 - The device cannot be visually distracting to the game.

 - The device must have a guided and simple setup.

 - The device must have user-adjustable settings for the maximum and
 minimum height for pitches.

 New skills/knowledge acquired that was not taught in courses:
 - Computer Vision

 - Machine learning applications

 - Flutter framework

 - iOS development

 Table of Contents
 1. Introduction 5

 1.1. P ROBLEM S TATEMENT 5

 1.2. I NTENDED U SERS 5

 2. Requirements, Constraints, And Standards 5

 2.1. R EQUIREMENTS & C ONSTRAINTS 5

 2.2. E NGINEERING S TANDARDS 5

 3 Project Plan 6

 3.1 Project Management/Tracking Procedures 6

 3.2 Task Decomposition 6

 3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 6

 3.4 Project Timeline/Schedule 6

 3.5 Risks And Risk Management/Mitigation 7

 3.6 Personnel Effort Requirements 7

 3.7 Other Resource Requirements 7

 4 Design 7

 4.1 Design Context 7

 4.1.1 Broader Context 7

 4.1.2 Prior Work/Solutions 8

 4.1.3 Technical Complexity 8

 4.2 Design Exploration 9

 4.2.1 Design Decisions 9

 4.2.2 Ideation 9

 4.2.3 Decision-Making and Trade-Off 9

 4.3 Proposed Design 9

 4.3.1 Overview 9

 4.3.2 Detailed Design and Visual(s) 9

 4.3.3 Functionality 10

 4.3.4 Areas of Concern and Development 10

 4.4 Technology Considerations 10

 4.5 Design Analysis 10

 5 Testing 10

 5.1 Unit Testing 11

 5.2 Interface Testing 11

 5.3 Integration Testing 11

 5.4 System Testing 11

 5.5 Regression Testing 11

 5.6 Acceptance Testing 11

 5.7 Security Testing (if applicable) 11

 5.8 Results 11

 6 Implementation 12

 7 Professional Responsibility 12

 7.1 Areas of Responsibility 12

 7.2 Project Specific Professional Responsibility Areas 12

 7.3 Most Applicable Professional Responsibility Area 12

 8 Closing Material 12

 8.1 Conclusion 12

 8.2 References 13

 9 Team 13

 9.1 T EAM M EMBERS 13

 9.2 R EQUIRED S KILL S ETS FOR Y OUR P ROJECT 13

 (if feasible – tie them to the requirements) 13

 9.3 S KILL S ETS C OVERED BY THE T EAM 13

 (for each skill, state which team member(s) cover it) 13

 9.4 P ROJECT M ANAGEMENT S TYLE A DOPTED BY THE TEAM 13

 Typically Waterfall or Agile for project management. 13

 9.5 I NITIAL P ROJECT M ANAGEMENT R OLES 13

 9.6 Team Contract 13

 1. Introduction

 1.1. Problem Statement

 In the game of softball, one crucial rule states that a pitch is only legal if the ball reaches its peak
 height within a minimum and maximum height bound during its flight to the batter. Currently,
 umpires must estimate this height by eye for every single pitch: a challenging task that relies heavily
 on personal judgment and can vary from one umpire to another. This reliance on subjective
 estimation can lead to inconsistent calls, potentially altering the outcome of games and affecting
 the fairness and enjoyment of the sport. Players might strike out on pitches that should have been
 deemed illegal, and fans may witness games swayed by questionable decisions.

 These issues highlight a broader problem: the lack of accessible technology to assist in making
 precise, real-time measurements during games. To address this, we are developing an affordable
 and user-friendly device that tracks each pitch using a single camera, accurately measures the ball's
 height using machine learning, and alerts officials when a pitch falls outside the legal bounds. By
 eliminating the guesswork from pitch height estimation, we aim to enhance the accuracy of calls,
 uphold the integrity of the game, and improve the experience for players, umpires, and fans alike.

 1.2. Intended Users

 Our product is designed to benefit several key groups within the softball community, including
 umpires, players, fans, and coaches.

 1. Umpires
 a. Description : Umpires are the officials responsible for enforcing the rules of

 softball during games. They must make quick, accurate decisions under the
 pressure of real-time play, often without technological assistance.

 b. Needs : Umpires need a reliable method to accurately determine if a pitch meets
 the legal height requirements, reducing the reliance on subjective judgment and
 minimizing errors that could impact the game's outcome.

 c. Benefits : Our device provides umpires with precise, real-time measurements of
 each pitch's height. This technology aids them in making consistent and accurate
 calls, reducing stress and enhancing their confidence in officiating. By supporting
 umpires with accurate data, we help maintain the game's fairness and integrity,
 directly addressing the issues outlined in our problem statement.

 2. Players
 a. Description : All players in a softball game are directly affected by the calls made

 by umpires and strive for a fair and competitive environment to showcase their
 skills.

 b. Needs : Players need assurance that the rules are being applied consistently so that
 their performance is judged fairly. Batters, in particular, need protection from
 illegal pitches that could unfairly result in strikeouts.

 c. Benefits : With our device ensuring accurate detection of illegal pitches, players
 can trust that the game is being officiated fairly. Batters are less likely to be unfairly
 penalized, and pitchers receive clear feedback on the legality of their pitches. This
 fosters a fair playing field and allows players to focus on their performance,
 enhancing the game's overall quality in line with our problem-solving goals.

 3. Fans
 a. Description : Fans are the spectators who enjoy watching softball games, whether

 in person at the stadium or through broadcasts. They are passionate about the
 sport and value exciting, fair competition.

 b. Needs : Fans desire an enjoyable viewing experience where player skill rather than
 officiating errors determine the game's outcome. They appreciate transparency and
 fairness in how the game is played and called.

 c. Benefits : By improving the accuracy of pitch legality calls, our device enhances the
 fairness and excitement of the game, leading to a more satisfying experience for
 fans. They can enjoy the sport knowing that technology is helping to uphold its
 integrity, which aligns with our aim to improve the overall enjoyment of softball.

 4. Coaches and Teams
 a. Description : Coaches and team staff are responsible for training players and

 developing game strategies. They work closely with players to improve skills and
 ensure compliance with the rules.

 b. Needs : Coaches need effective tools to train pitchers on delivering legal pitches
 and to adjust strategies based on accurate information about gameplay.

 c. Benefits : Our device can be used during practices to provide immediate feedback
 to pitchers on the height of their pitches, aiding in skill development and rule
 compliance. During games, accurate officiating supported by our product allows
 coaches to focus on strategy without worrying about inconsistent calls. This
 directly enhances player performance and upholds fair competition, as highlighted
 in our problem statement.

 By serving these users, our product addresses the critical issue of subjective pitch height estimation
 in softball. It promotes fair play, enhances the accuracy of officiating, and improves the overall
 experience for everyone involved in the sport. Our solution connects directly to our overarching
 goal of removing guesswork from the game, ensuring that softball is enjoyable, fair, and competitive
 for all participants

 2. Requirements, Constraints, And Standards

 2.1. Requirements & Constraints

 Functional Requirements

 - Object detection system to locate a softball at its maximum height during a pitch.
 - Detect an illegal pitch when a softball’s maximum height is higher than the specific

 maximum height or below the specific minimum height. (constraint)
 - Create an audible sound indicating an illegal pitch

 Physical Requirements

 - The device cannot be physically obstructive to the game.
 - The device must be portable to set up on a softball field.

 Environmental Requirements

 - The device must accommodate different fields, lighting, and balls.
 - The device cannot be visually or audibly distracting to the game.

 UI Requirements

 - The device must have a guided and simple setup.
 - The device must have user-adjustable settings for the maximum and minimum height for

 pitches. (constraint)

 Constraints

 - Maximum height (in feet) the softball can reach on a serve.
 - Minimum height (in feet) the softball must reach on a serve.
 - The device cannot be physically obstructive to the game.

 2.2. Engineering Standards

 The Importance of Engineering Standards (Q1)

 Engineering standards are important because people interact with engineering products every day.
 If there were no engineering standards, that would not only compromise the desired quality of
 engineering products but also affect things like the safety of everyday people. For example, people
 interact with civil engineering like bridges and buildings, and non-physical structures like apps and
 programs. A lack of requirements for these products could result in catastrophic failures of civil
 structures or a breach of confidential personal data from an insecure application. Engineering
 standards help ensure that these types of issues are avoided so people can continue to use these
 products to improve their lives and the lives of others

 Published Engineering Standards (Q2)

 - IEEE 1857.9-2022 provides standards for video encoding/decoding and analyzing methods.
 These standards apply to all forms of video manipulation, spanning from areas such as
 network video transmission over services such as UDP to computer vision topics such as
 object detection.

 - IEEE P3110 provides the standards for the necessary API requirements in a computer vision
 implementation. These API abstractions interface with various machine learning
 algorithms and are used to develop computer vision solutions such as OpenCV.

 - IEEE 1008-1987 provides guidelines for proper unit testing with a codebase. Specifically,
 guidelines exist for proper categories of testing (unit, integration, etc.) and code coverage
 reporting, among other testing-related requirements.

 Engineering Standards Relevancy (Q3)

 After reviewing the three standards, each has varying relevance to our project. Since our primary
 focus is on computer vision, IEEE P3110 is highly applicable. This standard provides guidelines for
 API requirements in computer vision and will help us ensure our project adheres to best practices
 when working with machine learning models like YOLO. It offers a strong foundation for
 structuring our computer vision solution. IEEE 1008-1987 also holds some relevance, as it provides
 useful guidelines for software testing. While our project’s smaller scale, incorporating structured
 unit testing can still improve code reliability. On the other hand, IEEE 1857.9-2022 is less applicable
 since it focuses more on video encoding and compression, which isn’t central to our object
 detection work.

 Other Applicable Standards (Q4)

 Some of the standards we found that differed from those provided that might be at least somewhat
 applicable to our project are below. IEEE Standard Digital Interface for Programmable
 Instrumentation. This standard applies because we use equipment and information that takes in
 different measurements. We will use different types of instrumentation that may be programmable
 to detect the softball. IEEE Standard for Application Programming Interfaces (APIs) for Deep
 Learning (DL) Inference Engines. This engineering standard is applicable because we are
 programming a solution to consistently and accurately find the height of a softball, including deep
 learning and AI-based detection algorithms. IEEE Standard Letter Symbols for Units of
 Measurement (SI Customary Inch-Pound Units, and Certain Other Units). This standard is

 applicable because it ensures that we incorporate the appropriate symbols for our measurement
 and that it is understood clearly using accurate measurements and symbols.

 Modifying Our Project to Incorporate Engineering Standards (Q5)

 Since our design is not finalized as we continue to test and prototype different designs, we don’t
 need to make any modifications now. However, several of these standards must be considered as we
 proceed with our design. Firstly, as we develop the software component of the project, we will need
 to keep in mind IEEE 1008-1978 regarding unit testing. We need to ensure that we are writing the
 software in a way that can be easily tested. We will also need to consider IEEE P3110 which covers
 standards with computer vision. Since many of us have never built an official project using
 computer vision, it is not natural to consider these standards. Moving forward, standards like this
 one must be considered during design

 3 Project Plan

 3.1 Project Management/Tracking Procedures

 We decided to adopt an AGILE methodology to manage our project. There are complex
 components we need to manage with our app. These components include our height detection
 script utilizing a machine learning approach and a mobile app utilizing Flutter and the Ultralytics
 Flutter plugin. To make development more manageable, we can divide the work into AGILE sprints
 with smaller goals, so we are not trying to tackle the entire project at once. This will improve our
 understanding of individual project components and help make a full implementation easier. To
 keep track of our progress, we are utilizing Git issues coupled with personal branches for individual
 development. Having an issues board will help us manage what tasks must be done. Using personal
 branches will help isolate development so we can develop individual components more efficiently
 without accidentally breaking the project's main branch or having more than one person alter the
 same file in different ways.

 3.2 Task Decomposition

 These tasks are intentionally left broad since we have not made final decisions on the entire design.
 Based on the AGILE methodology, many of these tasks will be adjusted as development continues
 and we receive feedback from the client. Any testing and prototyping would also affect our final
 implementation of these tasks. With this task decomposition, we split the project into two major
 tasks: detecting illegal pitches and developing the mobile application. These two tasks are the most
 significant challenges and are further broken into subtasks. In creating a model-compatible
 frontend we needed height calculation, pitch detection, and setup techniques. In developing an
 object tracking model we must collect, annotate, and augment data for training. Integration of the
 model and frontend would be completed for a fully functional application.

 3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

 In an AGILE development process, these milestones can be refined with successive
 iterations/sprints (perhaps a subset of your requirements applicable to those sprint).

 3.4 Project Timeline/Schedule

 Above is our proposed AGILE project timeline, featuring a clearly outlined sequential list of
 milestones. Our project has been separated into four parallel-running distinct categories: UI
 enhancements, testing, (object) tracking refinemenst, and collecting user feedback . Following an
 AGILE methodology, we have separated our project timeline into roughly one-week sprints where
 certain tasks are scheduled for completion. Each bar on the above Gantt chart represents a
 deliverable within an AGILE timeframe set to expire at the bar's end. Holistically, the above Gantt
 chart can be summarized in sprints as follows:

 Timeframe/Deliverables

 02/03 - 02/09 (Sprint 1)

 - Create test plan
 - Develop prototype plans

 02/10- 02/16 (Sprint 2)

 - Initial tests

 02/17 - 02/23 (Sprint 3)

 - Improve runtime
 - Improve functionality

 02/23 -03/02 (Sprint 4)

 - Add Visuals
 - Add Videos
 - Start trying to combine app with model

 03/03 -03/09 (Sprint 5)

 - Test product with users
 - Keep testing

 03/10 -03/16 (Sprint 6)

 - Continue Testing

 - Fix bugs and improve optimality

 03/17 - 03/23 (Sprint 7)

 - Continue Testing
 - Make sure tests are going smoothly

 03/24 - 03/30 (Sprint 8)

 - Apply feedback to app

 03/31 - 04/06 (Sprint 9)

 - Continued improvement
 - Fix issues and or areas that need improvement

 04/07 - 04/13 (Sprint 10)

 - Test more with added improvements
 - Try and find and then fix any issues

 04/14 - 04/20 (Sprint 11)

 - Add final functionalities of the app that will be used

 04/21 - 04/27 (Sprint 12)

 - Present final product to users for testing
 - Make final adjustments and improvements of the app/code

 04/28 - 05/04 (Sprint 13)

 - Finish the full working app
 - Complete all final deliverables

 3.5 Risks and Risk Management/Mitigation

 Sprint 1:

 - Risks:
 - Our current implementation of the opencv C++ backend with flutter isn’t

 ideal, as the implementation and usage of both of them currently are separate
 and need to be implemented together if we want to make any sort of progress.

 - Mitigation:
 - Try and merge our flutter project app development with our new C++ backend of

 the opencv implementation

 Sprint 2:

 - Risks:

 - The main issue is that running yolo on the phone without utilizing Apple’s
 ML framework causes significant frame hangs and stutters

 - We are also having difficulty translating the frame coordinates for the raw
 image data to the coordinate system flutter is using.

 - Mitigation:
 - Potentially implement the Ultralytics plugin model that can better run the yolo

 model much faster and with less framerate loss. Could also run faster than before
 as well.

 Sprint 3:

 - Risks:
 - YOLO through the Ultralytics functions still need to be integrated into

 Flutter’s tracking thread. A finer-tuned model can also help YOLO’s accuracy
 in determining only softballs within the frame.

 - The height calculations when self-identifying the ball still needs to be unit
 tested, and there is currently an error with iOS setup.

 - Grid layout still needs to be implemented.
 - Mitigation:

 - Implement the grid layout as quickly as possible, allow the integration of YOLO
 through Ultralytics in flutter’s tracking thread. Test and ensure the accuracy of the
 height calculation

 Sprint 4:

 - Risks:
 - Ultralytics still has some issues when implementing this and the overall

 implementation of all of these parts still needs to be studied and merged together.
 - Mitigation:

 - Continue debugging the issues with Ultralytics YOLO and make sure that we start
 merging the other aspects together.

 Sprint 5:

 - Risks:
 - Currently, all of our components are separate
 - We need to get a central screen that meshes everything we have worked on to

 beg to not have a central screen yet that we can test our current info and
 analysis on yet.

 - Still haven’t really tested anything yet with actual on field tests
 - Mitigation:

 - We need to get a central screen that meshes everything we have worked on to
 begin doing real live tests.

 Sprint 6:

 - Risks:

 - Current roboflow model that we implemented from last semester isn’t entirely
 accurate, however it was tested on different angles and types of videos that aren’t
 very similar to what we are going to test on.

 - Mitigation:
 - Implement a new roboflow model that is trained mainly if not completely on the

 actual camera angle and general conditions that we will be using the app on, so a
 side camera angle on a field with the ball being thrown in the air across the screen.

 Sprint 7:

 - Risks:
 - The Roboflow annotations still need to be completed. This takes time, and a

 new model can be built once finished.
 - The Ultralytics plugin requires portrait orientation, while our application

 requires landscape mode. This causes an error in the sizing and orientation of
 the camera preview.

 - The Ultralytics plugin currently does not update the ball coordinates variable.
 - Mitigation:

 - Try to annotate the new roboflow model as quickly as possible, and try and fix the
 orientation issues of Ultralytics forcing portrait, by potentially changing the rest of
 the app to portrait orientation. Try and fix the issue of plugin not updating the
 coordinates or not

 Sprint 8:

 - Risks:
 - The Roboflow annotations are still being worked on
 - The Ultralytics plugin requires a TensorFlow Lite model for Android.
 - The Ultralytics plugin currently does not update the ball coordinates variable.

 - Mitigation:
 - Finish annotating the roboflow new model images, as well as try and implement

 the new tensorflow Lite model for the ability to run our roboflow model on
 android as well.

 Sprint 9:

 - Risks:
 - The orientation fixes for IOS changed the Android orientation to be off now,

 so we might need more platform specific orientation changes.
 - Further testing and enhancing of our current model
 - Further work and implementation of pitching box and detecting when a pitch

 is being thrown and not just any ball in frame.
 - Mitigation:

 - Potentially fix platform specific orientation changes or switch to only one platform.
 Allow the pitching box to have an arming system that will arm when ball is
 detected for a certain amount of time within the pitching box.

 Sprint 10:

 - Risks:
 - Our conversion of YOLO coordinates to standard image size is not

 functioning. We need a new way of mapping our coordinates used in height
 calculations.

 - Full functionality is present within individual components and need to be
 integrated into the full system.

 - Mitigation:
 - Switch coordinate system and calculations to only one form of coordinates,

 preferably just use the YOLO coordinate system for everything to standardize it.
 Start working on full integration and test to make sure everything works together
 well.

 Sprint 11:

 - Risks:
 - YOLO red ball marker

 - When the Yolo model is executed using the iOS CoreML framework,
 the ball’s x and y coordinates are automatically captured as values
 between [0, 1]. Currently, the Ultralytics plugin converts these
 coordinates back to pixels based on an assumed aspect ratio.

 - UI Fixes
 - Overflowing widgets
 - Instructions page is outdated

 - Illegal logic listener
 - When ‘tracking’ is triggered to True, listener must collect and analyze

 the ball coordinates throughout the pitch until a max height is
 reached.

 - Sound should be played with the max height found is out of bounds.
 - Mitigation:

 - We could pass the x and y values directly to our screen, which calculates
 height, and then scale the ball’s position to fit our screen dimensions.

 - Update instructions page, try and fix overflow.
 - Implement the illegal sound audio to be played at the correct time.

 Sprint 12:

 - Risks:
 - The presentation and design document are not yet complete.
 - Do the finishing touches to our project, specifically small UI changes and

 making sure that the app runs smoothly and as accurately as possible.
 - Mitigation:

 - Finish up working on the presentation and design document as early as possible.
 - Fix and update the final touches on our project.

 3.6 Personnel Effort Requirements

 Team Member Task Descriptions Hours Worked

 Sullivan Fair YOLO Model development, Helped integrate
 Ultralytics-Flutter plugin, Gathered pitching data,
 Creating arming system for tracking, Refined Flutter
 screens, Performed user testin and gathered feedback

 129

 Casey Gehling Flutter screen development, C++/Flutter integration
 research, codebase hygiene maintenance, field
 research, video caching implementation, client
 interaction/team interaction

 107

 Ethan Gruening Prototype height calculation techniques, collect
 pitching data and videos, continuously developed and
 improved all Flutter screens (instructions, setup,
 tracking), field test for development, conducted user
 and model testing, weekly update presentations, and
 developed team website.

 170

 Josh Hyde Prototype object detection, research on different
 models and potential solutions, testing videos, Flutter
 screen work, illegal height lines, grid lines, android
 implementation work,

 124

 Cameron Mesman Flutter screen mock-ups, integrating C++ code into
 flutter, integrating illegal pitch audio into flutter code,
 field testing, unit testing

 114

 Andrew Vick Prototype object detection code, translate python
 scripts into C++, prototype detection and tracking code
 running on iPhone, Integrate tracking code and object
 detection

 120

 3.7 Other Resource Requirements

 Developing a mobile application, our team already owns cell phones to test our Flutter applications
 on iOS operating systems. The primary resources our team has and will continue utilizing are Iowa
 State’s recreational softball fields. Field availability is crucial for the research and testing for proper
 camera setup, object detection, and in-game functionality. Field reservations will be made as
 needed for future testing.

 4 Design

 4.1 Design Context

 4.1.1 Broader Context

	Area	 	Description	 	Examples	
 Public health,
 safety, and
 welfare

 Our project is a bystanding officiary to an
 existing softball game, an environment
 with a high risk for player injury. Our
 design must be non-intrusive and not be in
 the way of gameplay. There should be little
 to no contact between the game activity
 and our physical device to ensure public
 safety.

 Considering public safety, our setup
 is a mobile device placed on a mount
 along the fence. This ensures
 minimal physical interaction
 between the players and the device,
 limiting additional risk for the
 players.

 Global, cultural,
 and social

 Slow-pitch softball is a variation of a
 typical softball game for more novice
 players. Local leagues and amateur
 slow-pitch players are our target
 communities and it is our mission to
 ensure this device is catered to their
 financial and accessible needs.

 As engineers, our social and ethical
 responsibility is to create a design to
 accommodate local leagues. Our
 design as a mobile application opens
 our user base to all people with
 smartphones. This addresses the
 low-cost and portable solution that
 local leagues would require.

 Environmental Since our project is very niche, there is
 little to no environmental impact when
 using our product. However, it is
 important to recognize the environmental
 impact of materials and power
 consumption of the operating devices.

 Our product can be downloaded onto
 a user’s smartphone to limit
 additional electrical components.
 Additionally, a power supply for the
 smartphone will need to be provided
 and may require a battery charger for
 prolonged extended use.

 Economic Catering to local slow-pitch leagues, we
 must consider how our product will
 impact the league's funds for both umpire
 training and operation.

 Our product will be affordable for all
 users within a slow-pitch league
 since it requires an existing
 smartphone. A simple setup ensures
 that there will be little time training
 umpires to use the application or set
 it up before a game.

 4.1.2 Prior Work/Solutions

 Include relevant background/literature review for the project (cite at least 3 references for literature
 review in IEEE Format. See link:
 https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf)

 Beginning our discussions on our project design, we researched existing products and solutions for
 cameras that can track balls within a sports setting. Analyzing the existing products, their user
 reviews, and their targeted impact helped our team decide what approach would best suit our
 project.

https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf

 The first product we researched was the Specialized Imaging Tracker 2, a high-speed fast projectile
 measurement camera. This camera has three-axis rotation for camera positioning and is
 programmable for customization. Many users liked the full remote operation, multiple operating
 modes, tight accuracy error margins, and no need for calibration. However, this is a research-grade
 camera with a high cost and is very large. Considering our use case, local slow-pitch leagues would
 appreciate a camera with small error bounds and little to no calibration. Additionally, it's essential
 for our users to have an affordable and portable option for recreational use. The Specialized
 Imaging Tracker 2 may be too advanced for the operating scenario and out of the price range for
 local leagues.

 A similar product used in professional sports games is the Veo 3 Sports Cam. This is a 360-degree
 camera that not only tracks sports balls but also tracks players, displays heat maps, match stats, and

 tags game actions. This device is known for its object detection accuracy and
 long battery life. Users can also live stream their sports games through this
 camera. These features would benefit local softball leagues, though they are
 not needed for operating as a slow-pitch officiary. The downside to this
 product is it costs $2,400 and requires a subscription to operate. Used in a
 professional sense, the Veo 3 Sports Cam is a successful product. Its features
 may not be needed for the primary operations of a slow-pitch officiary tool;
 however, the high standard for preserving the integrity of the game with an
 accurate system gives users the confidence to use the product in game settings.

 The Pocket Radar Smart Coach is another product specializing in ball
 detection in a softball setting. This

 product is a small device, about the size of a smartphone,
 and records a clip of a softball pitch and its speed. The
 device is compatible with a mobile app that saves the video
 and speed of pitches. With a strong user interface, there are
 many positive user reviews. Users typically buy this product
 for the connection to their mobile device, the ability to share
 and review their pitches, and a cost-effective solution with a
 portable design. The Pocket Radar targets users who
 recreationally play and practice softball and baseball. Their
 isolation of extra sensors and cameras into a handheld
 device makes it accessible. A drawback to creating a small device is there is low battery life that
 limits users to a small usage time. The lower-quality camera has a more significant error bound
 than professional cameras, with a 1 mph error. Although this device has a small battery life and a
 more significant error bound, it is more tailored for local and recreational users, receiving positive
 feedback for their specific use cases.

 4.1.3 Technical Complexity

 Our slow-pitch softball application has several components that integrate together mathematical,
 engineering, and social challenges. Our engineering challenges can be split into two main modules:
 the frontend user experience and the height detection. The project's technical complexity would be
 a large project to design, prototype, and test. Considering this needs to be developed to be

 affordable and portable for local leagues, this increases the complexity as more readily available
 technologies should be used for a wider user base with lower costs.

 The height detection component of the project will require using a camera feed and
 machine-learning object detection techniques and existing libraries in tandem. Additionally, object
 detection alone will not be enough to determine height; a technique must be found to coordinate
 the ball’s location to a specific height through geometric calculations or calibrated values. With the
 limited existing products, our team must find our own solution to determining height using
 engineering principles and practices. Once accomplished, there can be further development to
 increase the fps or computation time for frame analysis. As an open-ended component of the
 project, the technical design, prototyping, and testing is a true example of an engineering problem
 within the real world.

 The height detection backend component is the application’s “computational brain.” Gathering
 calibration information, collecting camera frames, and setting maximum and minimum heights will
 need to be incorporated into the system’s frontend display. A user would interact with the program
 in several ways to start, end, and view the officiary logs. It is essential to develop an accessible and
 guiding frontend for umpires and players to experience a seamless setup and collection process. The
 compatibility of the frontend and the backend is also very important. This module is a technically
 advanced project, not only developing a user interface but also stitching it with the backend’s
 operations and reporting its output.

 In total, the technical components of this project provide complex engineering problems that
 match the industry standards as a real-world software project.

 4.2 Design Exploration

 4.2.1 Design Decisions

 A primary design decision was what system we would use for the camera collection and user
 interface. This decision will define what our users will need to purchase, calibrate, and gain
 familiarity with when running our application. From a technical standpoint, using multiple cameras
 would gain more data points to pinpoint the exact height of the ball. However, developing this
 product specifically for the ease and affordability of local slow-pitch leagues, we decided to
 implement this application on a singular mobile device. This design decision increases the project's
 technical complexity but better suits our user base. The application was chosen to be developed
 using Google’s app development platform, Flutter, which can be compiled to run on both Android
 and iOS, however our development is only focussed and works with IOS. Allowing anyone with a
 mobile device to install our application invites many users to interact with the widget-based
 accessible program for IOS. This was our most critical design decision, led by our social and ethical
 responsibility and our user needs.

 Another design decision was the technologies to use in the object detection of the softball within
 the camera frame. This decision was based on the compatibility with Flutter, the speed of the
 library’s methods, and the accuracy. After careful consideration and research, we decided to utilize
 the Ultralytics Flutter plugin, which allows us to efficiently run a custom-trained YOLO model for
 object detection. The plugin provided the best performance compared to hybrid solutions. Using
 a custom YOLO model for our object detection allows us to have complete control over how we

 want to refine the machine learning algorithm to best track softballs in out application. The plugin
 also offers an easy easy to switch which model we are running, allowing us to test models more
 efficiently. Overall, this decision balances performance with freedom of development, which
 complements the flexibility of our implementation.

 The final major design decision was the height calculation technique used to take in the position of
 a softball within a camera frame and output a specific height. After researching, the vertical pixel
 distance is constant and can be converted to feet when calibrated with known heights and a horizon
 line (the line from the home plate to the pitcher’s mound). This was found by placing a camera
 equidistant from the home plate and the pitcher’s mound, selecting where both are located within
 the frame and where a known height exists along the horizon line. The image below shows the
 equal segments representing 2ft.

 We now have a technique to analyze the (x,y) of the softball and determine if it lies within the
 maximum and minimum height bounds set by the user.

 4.2.2 Ideation

 The design decision we struggled with the most was finding and deciding on the height detection
 technique. As mentioned in section 4.2.1, we finalized the decision for finding the corresponding
 ground line below the pitch from home plate to pitcher's mound and identifying a known height to
 get the vertical pixel-to-feet ratio and turn the detected softball’s (x,y) coordinates into a height
 value. There were other prototyped and researched height calculation techniques that we
 considered for the final design:

 ● Multi-Camera Detection
 ○ Set up three cameras in different locations throughout the field.
 ○ Run the object detection on all the cameras and determine the ball's distance from

 each camera with the camera’s detected radius.
 ○ You can use each camera’s height to triangulate the exact location of the ball,

 including height.
 ○ This violates our design choice for a single camera.

 ● Machine Learning
 ○ Given a machine learning model the distance to the softball, calculated by the pixel

 radius of the detected softball, and the (x,y) coordinates, a machine learning model
 will guess the height.

 ○ After many iterations of training the model, we found it inconsistent and widely
 inaccurate.

 ○ The search for a geometric calculation technique was needed for fast and accurate
 return values.

 ● Known Radius Geometry
 ○ With the assumption that the radius stays constant for all softballs, we can use the

 number of pixels of the detected softball to find its distance from the camera
 ○ Given its (x,y) coordinates, we can determine the angle from the camera and use

 ● Pitching Line Calibration
 ○ The home plate and pitcher’s mound are identified within the camera frame
 ○ The pixel-to-distance ratio can be calculated with the known distance between the

 bases.
 ○ The pixel-to-distance ratio was inaccurate as the vertical ratio of pixels differs from

 the horizontal ratio.
 ○ The ratio found in this method will only determine horizontal distances, not

 vertical heights.
 ○ The search for a vertical distance conversion is needed to find the height of a given

 (x,y) point.
 ● Known Heights Calibration

 ○ The home plate, pitcher’s mound, and known heights are identified within the
 camera frame

 ○ The vertical pixel-to-distance ratio can be calculated from the home plate to the
 pitcher’s mound line and known height’s lines.

 ○ The height can be calculated given the (x,y), getting the number of pixels from the
 pitching line, and translating it into feet.

 ○ Used in the final design.

 4.2.3 Decision-Making and Trade-Off

 Design Option User Compatibility Observed
 Accuracy/Performance

 Mathematically
 Supported

 Multi-Camera
 Detection

 3/10
 It would require users
 to place and have
 access to multiple
 cameras running the
 application

 9/10
 Research shows this
 method is fairly
 accurate in
 triangulating a point,
 but the camera
 connection will delay
 the computation.

 10/10
 Triangulation is a
 technique used in
 satellites for GPS
 tracking for its
 accuracy.

 Machine Learning 10/10
 No setup would be
 needed as the
 machine learning
 model will handle the
 field differences.

 4/10
 The machine learning
 algorithm struggled to
 accurately depict
 heights when the
 camera was moved into
 a new environment.

 5/10
 Machine learning is
 the analysis of data
 trends, not a direct
 hard-coded
 mathematical
 relation between ball

 position and height.

 Known Radius
 Geometry

 9/10
 The height of the
 camera would need to
 be inputted by the
 user.

 3/10
 The radius of the ball
 becomes very small
 when the camera is
 placed far away, so the
 exact distance jumps
 when the radius
 increases by one pixel.

 4/10
 The angle of the ball
 to the camera based
 on its position in the
 frame varies from
 camera to camera.

 Pitching Line
 Calibration

 7/10
 You would have to
 select 2 points on the
 camera feed as a part
 of the setup.

 8/10
 The observed height
 looked fairly accurate
 when measuring a few
 trials in person, but
 reading larger heights
 prompted larger errors

 7/10
 The horizontal
 pixel-to-distance
 conversion ratio is
 similar to vertical,
 but not quite the
 same.

 Known Heights
 Calibration

 6/10
 You would have to
 select 4 points on the
 camera feed as a part
 of the setup.

 9/10

 The observed
 calculated heights
 seemed accurate, and
 the vertical distance
 distribution of pixels
 was visually equivalent.

 9/10
 The vertical known
 heights are
 equidistant when
 viewed and can be
 used to calculate a
 strong vertical
 pixel-to-distance
 ratio

 OpenCV 3/10
 Very slow and isn’t
 very practical for an
 app that uses opencv
 to be usable for most
 users.

 5/10
 Could detect the balle
 quite accurately, but
 only up close. Not as
 practical for an app to
 use

 7/10
 Realistically, opencv
 is quite
 mathematically
 supported, it uses
 well-know strategies
 to be able to detect
 things

 Ultralytics YOLO 7/10
 Easy to integrate into
 mobile apps, but takes
 a while to integrate
 with roboflow pytorch
 files.

 9/10
 Real-time object
 detection is accurate
 and consistent across
 varied environments
 with good lighting.

 8/10
 Uses convolutional
 neural networks,
 which are
 mathematically
 grounded but
 abstract

 We chose the known heights calibration because of the mathematical accuracy it provides. The
 observed height still needs to be rigorously tested but has the most significant potential of the
 options. The multi-camera detection option was not considered because it did not align with our
 cost-effective user needs and requirements for fast computations.

 4.3 Proposed Design

 4.3.1 Overview

 Starting with the Flutter app on a mobile device, users will have access to set up calibration values
 (min height, max height, and reference height) for the camera to fit their specific environment.
 When they enter the tracking screen, our app will utilize the Ultralytics-Flutter plugin to access
 their device’s camera and begin feeding it into our YOLO model. With the plugin, we are able to
 execute the model in the Flutter environment. The YOLO model will track the ball based on a
 custom dataset that we created. The model will then return the coordinates of the ball which we
 can then use to calculate the height using our pixel conversions. In addition, we do not want our
 model to be tracking the height of the ball all the time as that would result in illegal calls being
 made when the ball is in play. So, we also developed an ‘arming’ system that involves drawing a
 bounding box around the pitcher’s mound. When the ball is found in that box for two seconds, our
 tracking algorithm triggers and the app begins checking for an illegal pitch.

 4.3.2 Detailed Design and Visual(s)

 Calibration:

 ● Use YOLOv8 model to track the ball and collect the coordinates of the home plate, a
 reference height, and the pitchers mound.

 ●

 Calculate Height:

 ● Use YOLOv8 model to track the ball and collect the coordinates when pitched

 ●

 System Arming:

 ● Map the Pitcher’s Bounding Box

 ○
 ● Box Status Indicators (Red, Yellow, Green)

 ○

 .

 4.3.3 Functionality

 4.3.4 Areas of Concern and Development

 Currently, we have a complete implementation of our app. Users are able to specify the known
 height in the app, and through our calibration process, are able to use the app to track the height of
 a softball. However, the main area of concern for our application is the robustness and accuracy of
 our machine learning model. In the model’s current state, it is not sufficiently trained on all of the
 various lighting conditions that may be present during a softball game. To mitigate this issue, the
 model can be trained further on datasets with more lighting variety to increase the overall accuracy.
 In addition, we have been experimenting with different versions of YOLO models, mainly YOLOv8

 and 11. We need to be able to find the model that provides the best combination of accuracy and
 performance, which is the end goal of making it best for our users.

 4.4 Technology Considerations
 Our project consists of multiple components that help integrate the two main components of our
 design: object detection and mobile app development. We use Google’s app development tool
 Flutter, which can be compiled to run on an Apple iPhone, Android mobile device, or mobile
 emulators. However, due to compatibility issues with the Ultralytics plugin, we have prioritized the
 IOS platform for our application. Flutter uses Dart for an accessible widget-based design. Flutter’s
 plugin functionality allows a smoother cross-platform development when utilizing device
 components such as the camera. Using Flutter, we can satisfy our technical challenges of developing
 an aesthetically pleasing and accessible user interface with an Ultralytics backend.

 Integrating into Flutter’s backend, we use the Ultralytics-Flutter plugin to track the softball in the
 camera frame via machine learning. There exist many sports ball tracking systems currently on the
 market. However, these systems typically guarantee accuracy with a multi-camera setup with
 expensive, high-quality cameras. Our design accommodates local league use with a camera on a
 mobile device. With a singular camera on the field providing one plane of vision, our application’s
 accuracy relies on precisely detecting the softball within a camera frame. We do this using a custom
 trained YOLO model, which detects an object using machine learning. With our machine learning
 approach, we can use known heights provided during calibration to calculate the height using the
 ball coordinates returned from the YOLO model.

 4.5 Design Analysis

 Using our machine learning based design, we have been able to fully integrate our object detection
 and height calculation methods into our app. The Ultralytics plugin allowed for a seamless
 integration of our YOLO model into our Flutter environment. Currently, our app is able to create
 the pixel conversions we need to calculate height using provided known height values, our YOLO
 model then tracks the ball and returns the coordinates where it was found, and we use those
 coordinates in our height calculation to return the height of the ball. With this design, we have
 confirmed that it is possible to determine the height of the ball using a single camera.

 From here, further refinements of our machine learning model are needed to account for the
 various conditions that can be present during a softball game. Currently, our model provides
 accurate results under ideal conditions, but we want to ensure that our users can utilize our app
 under all conditions. Specifically, our model occasionally detects objects that are not softballs,
 meaning that the model is either overtrained, or is not trained well enough. Through model
 refinements and further training, we expect that our app can be completely functional under all
 conditions. We also need to ensure the efficiency of our app. The YOLO model does require
 reasonable computation power, which has revealed issues when doing things like screen recording
 the phone while running our app, which often results in crashing. While this is a specific scenario,
 we aim to take these issues into account so our app can run as expected without reduce the
 performance of other aspects of the device.

 5 Testing

 5.1 Unit Testing

 Our solution is primarily software based; this implies the necessity for proper unit testing for each
 separate piece of functionality within our code. Because our main solution functionality is divided
 among two separate technical areas, the Flutter frontend and our tracking backend, unit testing is
 treated differently between the two implementations.

 Within our frontend, unit testing occurs with each individual “widget”, or visual component of our
 user interface to ensure items appear correctly on screen from our mobile application. This testing
 ensures that the user experience of our app remains consistent and that there is a high ease of
 access for users. It also ensures that data is properly being accessed within our application between
 components to ensure accuracy. In terms of the tools used for unit testing within our frontend,
 Flutter comes bundled with real-time debugging tools, useful for diagnosing and troubleshooting
 problems that occur when running an app. These tools can be accessed via a locally hosted interface
 accessible upon starting the Flutter app.

 For testing the backend, we focused on the performance of our machine learning model. To test
 this we started by reserving sections of our prepared dataset for testing and validation. When the
 model goes under training, it takes a subset of the training frames from our dataset, trains on those
 frames, then runs the model against a subset of validation frames. This process was completed over
 a series of 400 epochs. Once the model was done training, we ran it against the testing frames to
 verify its performance. Further testing was done once the model was integrated into our app.
 Initially, we added a shortcut to the model within our app that bypassed the calibration section.
 From there, we were able to run the model directly to verify that it was able to function within our
 app.

 5.2 Interface Testing

 The interfaces included in our design include the user interface built within Flutter along with the
 communication between the Ultralytics-Flutter plugin and the Flutter side. The graphical user
 interface was testing by running our app and ensuring that all of the widgets were behaving as
 expected. We also verified that certain function calls were being entered by adding print
 statements within the functions that were displayed via the Flutter debugging output. For the
 Ultralytics plugin, we were able to directly integrate the plugin within our app, so no external
 communication was necessary. The Ultralytics plugin was verified for correctness with the
 aforementioned model shortcut, along with print statements being added where necessary. As
 there was no external communication between Flutter and the plugin, just being able to run the
 model showed that our interfaces were behaving properly.

 5.3 Integration Testing

 The main focus of our integration testing was ensuring that we were able to use our model after
 performing the calibration. To verify this, we first displayed the calibration values after setup via
 the debugging output. This confirmed that our initial values were being initialized correctly. After
 calibration, the app moves to the actual tracking screen which utilizes the Ultralytics plugin. We
 then printed out the setup values in that screen to confirm that the calibration values were being
 passed to the tracking screen properly. Next, we ensured that the model itself ran properly after
 moving to the tracking screen by displaying a red dot if it detected the ball. With these steps, we

 were able to ensure that the integration between Flutter and our machine learning model behaved
 as expected.

 5.4 System Testing

 We performed system testing by using our app in a realistic environment. To achieve this, we went
 out to the recreational softball fields, where we mounted a phone on a tripod and ran our app.
 From there, we verified that our app functioned normally. In addition to Flutter’s reloading
 capabilities, we were able to make small corrections to the code where needed and reload our app
 while it was running to verify correctness. Based on the results we gathered from each testing
 session on the field, we were able to make modifications to our code to mitigate issues that arose
 during testing. After fixing any issues, we went back out to the field to test further.

 During testing, we also verified our height calculation algorithm by holding the ball at a known
 height. With the known height, we could observe the height that the model returned and verify
 that what the model returned was correct. As we stored and displayed the setup values that are
 used in our height calculation, we were able to easily make adjustments based on what the model
 was outputting.

 5.5 Regression Testing

 The main focus of our regression testing was based on changes we made to our machine learning
 model. As Flutter is modular by design with the widget-based implementation, it was easy to make
 changes to the Flutter side without changing large sections of code. For the machine learning
 model, the Ultralytics plugin made it easy to specify what model we wanted to use. So, as we made
 further refinements to our model, we were able to easily plug-in the new model and verify its
 correctness by testing our app on the field.

 5.6 Acceptance Testing

 To verify the correctness of our system, we based it on our design requirements. With our
 requirements, we could easily tell if our app was providing accurate results. Specifically, we wanted
 our app to be easy to set up as well as the illegal call being faster than a normal umpire with an
 height accuracy being within ±4 inches.

 To ensure this, we have members of the ISU softball team use our app to see how easy the setup and
 use of our app would be for someone who has never used it. This ensured that we had an unbiased
 opinion of our app along with accounting for any potential user errors that we missed. Finally, we
 were able to verify our height calculation by holding the ball at a known height.

 5.7 Results

 Based on our testing, our app functions very well based on our requirements. Our app is able to
 detect the height of the ball in a ±6 inches, which is not within our desired range; however, future
 refinements of our machine learning model would likely move the detected height within our
 desired range. Next, our app was able to detect and call an illegal pitch in .22 seconds, which is just
 above our desired goal of .2 seconds. Finally, for ease of use and setup, the ISU club softball
 members stated that the setup of our app was simple, and that they would trust a system like this to
 be used during actual softball games.

 While our end metrics don’t quite meet our previously set goals, we believe that with further
 training of our machine learning model, the performance of our app should fall within our desired
 goals. In the end, we feel that we created a successful implementation of the desired product.

 6 Implementation
 Object Detection:

 For our final deliverable we settled on utilizing only a YOLO model for object detection. We were
 able to solely rely on the model because we were able to integrate the Ultralytics Flutter plugin into
 our app which allowed us to utilize the iPhone CoreML hardware. By taking advantage of the
 phone’s dedicated hardware for ML tasks, model inference speeds were quick enough to rely on it
 for tracking and detection.

 Pitch Detection:

 As mentioned in 4.3.2, we first detect when a pitch is thrown before deducing if a pitch is illegal. We
 do this by creating a bounding box around the pitcher’s mound and triggering our tracking only
 when a ball is thrown after the pitcher is holding the ball within the bounding box for 2 seconds.
 Additional logic for our pitch detection and system arming can be found in section 4.3.2.

 Height Detection:

 As mentioned in 4.3.2, we implemented our height calculation to use the coordinates of the ball,
 home plate, and a known reference height, using coordinates from the YOLO model, to convert
 pixel height to a height in feet.

 We observed in the image below, that when we horizontally align the pitcher’s mound and the
 home plate within a camera frame, that the vertical pixel-to-feet ratio is constant. Each green line
 represents a reference height, measured on both the pitcher’s mound and home plate, and
 connected by the green line. The distance between each line is one foot, and the pixels between
 lines remain constant for each new height.

 Using this knowledge, we can calculate the average pixel length from the known reference height
 and the home plate, calculate the pixel height of the ball, and convert the pixel height to a height in
 feet. When the maximum height of the pitch is found, we can then determine if the pitch is illegal
 using the maximum and minimum height values.

 Screen Development:

 Our application contains multiple screens that flow from an initial application landing page to the
 main camera screen as pictured below. These screens include:

 - Landing Screen : acts as an initial screen which is presented to the user. This is the root of
 the application and is where the user starts navigation.

 - Instructions Screen: instructs the user on the method of calibration that is essential for
 our applications functionality. This screen includes information as well a guided visuals on
 how to properly calibrate our application on the following screen.

 - Setup Values Screen : the user inputs a reference height (usually the height of a player or a
 known-length object) as well as maximum and minimum ball thresholds.

 - Calibration Screen : a series of timed camera screens that are used to obtain ball
 coordinates as well as reference height points for height calculation.

 - Camera Screen : displays the currently tracked softball as well as other information
 essential for an end user to discern the height-tracking capabilities of our application.

 The implementations of these screens as well as visual references to them can be viewed under
 appendix one below.

 7 Ethics and Professional Responsibility

 7.1 Areas of Professional Responsibility/Codes of Ethics

 Area of
 Responsibility

 Definition IEEE Item Team Interaction

 Work Competence Perform professional,
 high-quality work

 “To seek, accept, and
 offer honest criticism
 of technical work, to
 acknowledge and
 correct errors…”

 The team focused on
 this area by
 developing solutions
 and experimenting
 with modern
 technologies to ensure
 we create the best
 solution.

 Financial
 Responsibility

 Deliver reliable
 products that are
 reasonably priced

 “To be honest and
 realistic in stating
 claims or estimates
 based on available
 data…”

 Our design choices
 are based on usability,
 such as having the
 app be free and not
 requiring an
 additional camera,
 which upholds this
 area.

 Communication
 Honesty

 Report truthful work
 to shareholders

 “To be honest and
 realistic in stating
 claims or estimates
 based on available
 data…”

 We have upheld this
 area by meeting
 weekly with the client
 and frequently
 communicating our
 progress and design
 choices.

 Health, Safety,
 Well-Being

 Minimize
 shareholders’ health
 and safety risks

 “To hold paramount
 the safety, health, and
 welfare of the
 public…”

 The team wanted to
 minimize injury risk
 during the setup of
 our product, which
 helped lead us to our
 app-based solution,
 which eliminated the
 need to set up
 multiple cameras.

 Property Ownership Respect the property
 of others

 “To credit properly
 the contributions of
 others…”

 We followed this area
 by acknowledging the
 individual
 contributions of the
 team and by
 collaborating on
 different areas of the
 project so multiple

 members could gain
 knowledge in multiple
 areas.

 Sustainability Protect environmental
 and natural resources

 “To strive to comply
 with ethical design
 and sustainable
 development
 practices…”

 We focused on this
 area by making our
 app cross-compatible
 and usable on
 multiple iterations of
 phones, meaning our
 users will not need to
 continue to purchase
 new devices to use
 our product.

 Social Responsibility Make products that
 benefit society

 “To improve the
 understanding by
 individuals and
 society…”

 Our team has a
 responsibility to
 produce accurate data
 and to better the
 experience of rec
 league slowpitch
 softball players and
 umpires, so we
 focused on making
 our solution easy to
 use and available to
 slowpitch leagues.

 Best Area of Responsibility; Social Responsibility:

 We have chosen to approach this standard by designing our project to prioritize affordability,
 portability, and easy accessibility for local communities to have access to simple officiating
 assistance. Although this further complicates our software tracking model, it simplifies the
 application for the community. This decision in our development was ethically driven with the
 community in mind rather than solely for efficient development.

 Worst Area of Responsibility; Sustainability:

 We haven’t been prioritizing the efficiency and runtime of our code up to this point as we’re trying
 to get prototypes working, which could result in more power consumption and more contribution
 to negative environmental impacts. Our team plans on working to not only write code but to refine
 it to be as efficient as possible. Thus reducing the amount of power needed to run our app.

 7.2 Four Principles

 Beneficence Nonmaleficence Respect for
 Autonomy

 Justice

 Public health,
 safety, and

 welfare

 Our product
 aims to improve
 the state of rec
 league softball
 games, which
 benefits the
 enjoyment of
 everyone
 involved.

 We are avoiding
 using multiple
 cameras which
 reduces risk
 during setup and
 improves the
 usability of our
 product.

 We allow users to
 store past pitches,
 so they can make
 their own decisions
 based on
 non-subjective
 data, improving
 the enjoyment of
 the game.

 Our app will
 provide
 unbiased, real
 data to help
 officiate games,
 which will
 improve the
 fairness of the
 game.

 Global,
 cultural, and

 social

 Promotes fair
 play by providing
 an objective tool
 for measuring
 pitch height,
 which will
 reduce
 arguments
 between players
 and officials.

 Keeping our
 solution focused
 on a single
 device allows a
 normal game of
 softball to play
 normally without
 disrupting the
 existing league
 culture.

 Since the height
 range of our app
 will be
 customizable,
 different cultures
 and leagues can set
 up the app to work
 for their needs.

 The height range
 customization of
 our app will
 allow multiple
 leagues with
 different rules to
 improve the
 equality of how
 the game is
 called.

 Environmental Focusing on
 developing our
 project on a
 phone reduces
 the need for
 multiple tracking
 cameras
 benefitting the
 environmental
 impact.

 Avoiding
 multiple cameras
 allows our users
 to use an existing
 phone instead of
 having to pay
 and ship a new
 camera.

 Our product allows
 users to choose to
 use their existing
 phone instead of
 making more
 environmental
 impacts by paying
 for more cameras.

 Our app will be
 able to be
 utilizied by all
 leagues, even
 ones with limited
 resources. This
 keeps them form
 needing to invest
 in other cameras
 that may
 contribute to
 environmental
 damage.

 Economic Our solution is
 free which
 eliminates the
 need to purchase
 expensive
 tracking
 equipment.

 Using one device
 to perform all of
 the tracking
 helps us keep the
 app free because
 we can forgo the
 cost of an
 additional
 camera.

 A league can make
 their own choices
 on whether or not
 to use our app or
 not, which gives
 them control over
 any economicals
 adjustments it my
 require such as a
 league phone to
 use the app.

 The free price
 point of our app
 allows a wide
 range of leagues
 with different
 financial
 backgrounds can
 utilize our app to
 improve the
 league.

 Area We Focused On; Public health, safety, and welfare X Beneficence:

 We are aiming to improve the enjoyment of the game. We plan to achieve this by ensuring simple
 setup for umpires, returning accurate data so the right calls are constantly being made, and being
 configurable for different height ranges so it can be used by a variety of leagues.

 Area of Improvement; Environmental X Respect For Autonomy:

 Based on the result of further testing, we may end up needing to restrict our app to only work on
 phones with a certain camera quality. Older phones with worse may not be able to provide the data
 needed for accurate tracking. This could result in leagues without immediate access to a high
 quality phone having to purchase a new device through shipping methods that contribute to
 environmental damage.

 We plan on overcoming this negative aspect by ensuring our app can run on phones that are widely
 available and already owned by a majority of people. This will keep the availability of our app high
 and will reduce the need to purchase a new device.

 7.3 Virtues

 ● Accuracy
 ○ We strive to provide accuracy for our users, as it is important for illegal pitches to

 be called correctly so as to not cause distress between players, officials, and fans.
 ○ We will achieve this virtue by continuously refine our ball tracking code and

 provide easy-to-use calibration steps so our app can be calibrated to fit the needs of
 each field.

 ● Empathy
 ○ Our app is solely focused on bettering the game for players, officials, and fans. We

 want to ensure that we are always prioritizing their needs over what makes it easier
 for us.

 ○ Communicating our design choices with our client and collecting feedback from
 testing are how we will ensure that we are always taking user needs into account.

 ● Innovation
 ○ We want our product to be easily integrating into existing leagues. So, we are

 innovating a single camera design approach that will make it easy to set up without
 the needs for multiple cameras.

 ○ Constant prototyping and research into different tracking methods will help keep
 us engaged with new ideas and strategies as to how to improve our single camera
 solution. Current team innovation like or height line system are already helping us
 improve our height detection methods.

 Each team member should also answer the following:

 ● Identify one virtue you have demonstrated in your senior design work thus far? (Individual)
 o Why is it important to you?
 o How have you demonstrated it?

 ● Identify one virtue that is important to you that you have not demonstrated in your senior
 design work thus far? (Individual)

 o Why is it important to you?

 o What might you do to demonstrate that virtue?

 ● Andrew
 o Demonstrated Virtue: Open-mindedness

 ▪ Throughout the project, I consistently researched new and more effective

 ways for our team to track softball. As our project constraints evolved, I
 adapted my approach to object detection accordingly. For example, after
 spending time developing a solution using OpenCV, I discovered the
 Ultralytics plugin, which allowed us to run a YOLO model on the phone
 with fast enough performance to handle both detection and tracking. Even
 though this made much of my earlier work obsolete, I was willing to pivot
 and focus on learning how to integrate the new approach because it was
 ultimately better for the team and the project.

 ▪ This virtue matters to me because in software engineering, nothing stays

 static, tools, requirements, and best practices change constantly. Being
 open to new ideas, even when it means moving on from something you’ve
 already invested in, is critical for building the best possible solution.

 o Non-Demonstrated Virtue: Communication

 ▪ Communication was one virtue that I find very important even though I

 may have not been the best at it during this project. I often got deep in the
 weeds of researching and experimenting with different object detection
 technologies but ended up failing to fully communicate what I was doing
 and why. Communication is important to me because no matter how good
 the technical solution is, it doesn't matter if the rest of the team doesn't
 understand it or can’t efficiently work with it or integrate it with the rest of
 the application.

 ▪ Moving forward, I plan to be more intentional about communicating

 decisions, updates and reasoning behind changes, by summarizing key
 shifts in meetings and documenting decisions in shared notes.

 ● Casey
 o Demonstrated Virtue: Persistence

 ▪ I have primarily been able to aid in code refactorization, UI revamping,

 and testing this past semester. I feel that my contributions aided in the
 success of our project despite various roadblocks that may have occurred
 along the way.

 ▪ This virtue is important to me as being able to balance project needs with

 other work, study, or personal needs is critical to the success of a project.

 o Non-Demonstrated Virtue: Communication

 ▪ I feel that this semester my communication wasn’t as effective as it has

 been in the past. There were times with work, studies, and other

 circumstances that caused me to regrettably fall behind on some
 important decisions; this caused miscommunication and error in my work
 when certain features were being worked on in parallel, for example
 causing certain feature changes to become obsolete in the face of new
 features being pushed out.

 ▪ Ultimately, this was a learning experience for me, and I am confident in

 our final product and my ability to communicate effectively in the future. I
 will continue to work on asserting myself in team spaces to ensure my
 progress aligns with others.

 ● Sully

 o Demonstrated Virtue: Persistence

 ▪ With any project, there are bound to be roadblocks that come up that

 prevent progress. I believe it is essential that I am persistent in attacking
 these roadblocks and continuing to experiment so that we can solve our
 problems.

 ▪ I demonstrated this virtue by continuing to attempt to integrate our C++

 code into the Flutter app. There have been many issues with the
 integration, mainly stemming from the OpenCV libraries having issues
 running on iOS, and I need to persist through this issue so we can
 complete our app. While I haven’t been able to fully integrate the code yet,
 I have made good progress through the OpenCV tracking framework for
 iOS I helped create.

 o Non-Demonstrated Virtue: Adaptability

 ▪ We are utilizing many different technologies in the making of our app. So,

 it is important that I become familiar with the all of the technologies we
 are using, so I now how all of the components work together in detail.

 ▪ I will demonstrate this virtue by pairing with other team members who are

 working on different areas and learning how they developed their ideas so
 I can help with issues in the future.

 ● Cameron

 o Versatility

 ▪ This project has brought me outside of my comfort zone numerous times

 and required me to do things I have no experience with. Learning flutter
 and all of the ML topics was new to me and forced me to go outside my
 current knowledge to complete the tasks.

 ▪ This is important to me because it is a necessity in the workforce. New

 technologies are constantly popping up, so a good engineer must be able
 to adapt to these new technologies and learn how to best use them.

 o Communication

 ▪ I felt like this semester, I wasn’t always communicating well with my team

 and that hurt my work. With better communication I would be able to
 work through issues quicker and help the engineering process as whole.

 ▪ Hopefully, I’ll be able to attend the weekly meetings next semester which

 will help immensely. Other than that, I just need to be more willing to
 reach out to my teammates for help and to keep them updated on my
 progress.

 ● Ethan

 o Demonstrated Virtue: Diligence

 ▪ Throughout working on this senior project I felt I showed the virtue of

 diligence by persistently achieving weekly goals. I did this by making
 weekly update presentations for our advisory and team to outline our
 contributions for the week, the current integration of our components,
 and the steps we must take to move forward. Diligently staying updated
 with my team and planning for the future was my strongest virtue I
 showed in this project.

 o Non-Demonstrated Virtue: Conviction

 ▪ During many of the project’s life cycle there were times where I believe

 something wasn’t working effectively or there was an issue with the team’s
 development cycle. However, many times I did speak up to these issues.
 My actions and communication between the group occasionally did not
 align with my beliefs and I should have spoken up about issues within our
 project and showed conviction to stand up for what I believe was right. I
 will work on speaking up in groups and being direct in my thoughts of
 situations that arise during development cycles.

 ● Josh

 o Demonstrated Virtue: Creativity

 ▪ One virtue I feel like I demonstrated pretty well during this project for the

 most part was creativity, and coming up with different and unique

 solutions to some of our problems we were having within the group. We
 had quite a few problems and issues as a group, on top of just individually,
 but I felt like I did a good job at thinking of creative ways to come up with
 a solution to our project and different small problems.

 ● Non-Demonstrated Virtue: Persistence

 ▪ One thing I struggled with personally on this project was finding the

 strength and strategies to push past some of my or our team's struggles. I
 obviously tried my best to get past some of these struggles, but I still felt
 like I was stuck on a wall at some parts of the project and even with some
 creativity some lack of solutions definitely demotivated me a little bit.
 Additionally, sometimes I wasn’t sure in what direction I could help the
 project in at certain times, and I definitely tried improving this part of
 myself during most of this project to get to a point where I’m confident I
 can fix these issues to be less of an issue in the future.

 8 Closing Material

 8.1 Conclusion

 We were able to fully integrate the three main parts of our project laid out from the first semester.
 This included the object and tracking functionality, calculations for determining the height of the
 pitch and a full app design. We ended up pivoting from using C++ code in our app since it caused
 performance issues while running Flutter and we found a better way to integrate the YOLO model
 into our app that allowed us to take advantage of the CoreML architecture on newer iPhones. By
 utilizing the ML architecture we were able to massively improve inference speeds to the point where
 we no longer needed OpenCV’s tracking modules further reducing our need for running C++ code.
 Unfortunately though due to time constraints and issues with translating our trained YOLO model
 to a format compatible with Androids ML architecture we were unable to make our app cross
 platform. In the future if another senior design group ends up working on our project they will
 need to focus on training a more refined version of our YOLO model, translating it to a format
 compatible with Android and performing more exhaustive testing.

 8.2 References

 [1] “C Interop using Dart:FFI,” Dart, https://dart.dev/interop/c-interop (accessed Dec. 7, 2024).

 [2] “Required packages,” OpenCV, https://docs.opencv.org/4.x/d5/da3/tutorial_ios_install.html
 (accessed Dec. 7, 2024).

 [3] “Material library,” material library - Dart API,
 https://api.flutter.dev/flutter/material/material-library.html (accessed Dec. 7, 2024).

 9 Team

 9.1 T EAM M EMBERS

 ● Ethan Gruening
 ● Casey Gehling
 ● Sullivan Fair
 ● Josh Hyde
 ● Cameron Mesman
 ● Andrew Vick

 9.2 R EQUIRED S KILL S ETS FOR Y OUR P ROJECT

 ● App Development
 ● Flutter Framework
 ● Machine Learning
 ● Yolo/Ultralytics
 ● IOS Development

 9.3 S KILL S ETS C OVERED BY THE T EAM

 ● Ethan Gruening: App Development, User Testing, Android Studio Emulation
 ● Casey Gehling: App Development, Flutter
 ● Sullivan Fair: App Development, Frameworks
 ● Josh Hyde: Flutter, App Development, Testing, Android
 ● Cameron Mesman: App development, Flutter, C++
 ● Andrew Vick: App development, ML training, Swift, Flutter

 9.4 P ROJECT M ANAGEMENT S TYLE A DOPTED BY THE TEAM

 ● Agile

 9.5 I NITIAL P ROJECT M ANAGEMENT R OLES

 ● Team Organization : Ethan Gruening
 ● Client Interaction : Casey Gehling
 ● Machine Learning Integration : Andrew Vick
 ● Individual Component Development : Sullivan Fair
 ● Research : Josh Hyde
 ● Testing : Cameron Mesman

 9.6 Team Contract

 Team Name ____________sdmay25-11________________

 Team Members:

 1) __________Andrew Vick__________ 2) ________Casey Gehling___________

 3) __________Cameron Mesman______ 4) ________Joshua Hyde_____________

 5) __________Ethan Gruening________ 6) ________Sullivan Fair_____________

 Team Procedures

 Day, time, and location (face-to-face or virtual) for regular team meetings:

 1 pm every Wednesday (possibly)

 2 pm every Monday with advisor (Dr. Fila)

 Preferred method of communication updates, reminders, issues, and scheduling (e.g.,
 e-mail, phone, app, face-to-face):

 Discord

 Decision-making policy (e.g., consensus, majority vote):

 Majority Vote

 Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
 shared/archived):

 Andrew Vick will record meeting minutes, which will be stored in a document on our drive, and I
 will send a message in Discord for that meeting.

 Ethan Gruening will record meeting notes, which will be stored in a document on the team’s shared
 drive.

 Participation Expectations

 Expected individual attendance, punctuality, and participation at all team meetings:

 We are expected to attend, share, and be on time for all meetings

 Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

 Everyone is expected to meet deadlines, make meaningful contributions to the project, and be on
 time.

 Expected level of communication with other team members:

 Everyone is expected to be active in the discord and respond to teamwide questions within one
 business day.

 Expected level of commitment to team decisions and tasks:

 Everyone is expected to be committed to team decisions and tasks. This extends to actively
 engaging in discussions and conveying your ideas.

 Leadership

 Leadership roles for each team member (e.g., team organization, client interaction,
 individual component design, testing, etc.):

 Team Organization : Ethan Gruening

 Client Interaction : Casey Gehling

 Machine Learning Integration : Andrew Vick

 Individual Component Development : Sullivan Fair

 Research : Josh Hyde

 Testing : Cameron Mesman

 Strategies for supporting and guiding the work of all team members:

 Weekly standup meetings where we discuss the week's events and ensure everyone is keeping up
 with the workload.

 Strategies for recognizing the contributions of all team members:

 During weekly standup every member will share what they worked on and any information they
 found regarding the development of our product. This allows every member to share their
 contributions and receive feedback.

 Collaboration and Inclusion

 Andrew Vick, Software Engineering. Some of my relevant skills include C/C++, Python, and IoT
 devices. Most of my experience has come from personal projects for instance, using Python, I
 created my own virtual assistant.

 Casey Gehling, Computer Engineering. Relevant technical skills are Embedded Programming,
 Networking, Fullstack Development, and UI Design. Additionally, I have relevant experience in
 client communication and requirements gathering.

 Sullivan Fair, Software Engineering. Relevant skills include general coding knowledge of Java, C, C#,
 Python, JavaScript, AWS knowledge, GIT, and cybersecurity knowledge.

 Ethan Gruening, Software Engineering. My relevant skills include, but are not limited to, Python, C,
 Java, JavaScipt, and AWS. Most of my projects/experiences involve user interphases, I/O devices,
 and API service integrations.

 Josh Hyde, Computer Engineering. My relevant skills are generic coding in C/C++ and Java, and
 some database work with MySQL. I also have been in different groups before and have had to work
 together towards a common project goal.

 Cameron Mesman, Computer Engineer. My relevant skills are coding with C and Java. I have
 experience programming embedded systems, app design (backend, frontend, and database
 languages), and computer architecture.

 Strategies for encouraging and supporting contributions and ideas from all team members:

 Goal-Setting, Planning, and Execution

 Team goals for this semester:

 Create a full implementation of our app

 Perform user testing

 Strategies for planning and assigning individual and teamwork:

 During team meetings, we will identify what needs to be worked on for the week. From there, we
 will assign who tackles which task based on their expertise.

 Strategies for keeping on task:

 Weekly goals and check-ins

 Consequences for Not Adhering to Team Contract

 How will you handle infractions of any of the obligations of this team contract?

 In the event of an infraction by a team member, the team as a whole will reach out to the member
 to see why they aren’t adhering to our contract.

 What will your team do if the infractions continue?

 If the infractions continue and we cannot resolve the issue internally, we will finally reach out to
 Professor Fila regarding the member.

 a) I participated in formulating the standards, roles, and procedures as stated in this contract.

 b) I understand that I am obligated to abide by these terms and conditions.

 c) I understand that if I do not abide by these terms and conditions, I will suffer the

 consequences as stated in this contract.

 1) _________________Sullivan Fair_____________________ DATE __09/18/2024_______

 2) _________________Andrew Vick_____________________ DATE __09/18/2024_______

 3) _________________Casey Gehling____________________ DATE __5/1/2025_______

 4) _________________Ethan Gruening___________________ DATE __5/1/2025_______

 5) _________________Josh Hyde_______________________ DATE __4/28/2025_______

 6) _________________Cameron Mesman_________________ DATE __5/1/2025_______

 Appendix 1: Instruction Manual
 1. Open the app

 a. The user will see the Home page with a ‘Start’ button

 2. Click ‘Start’
 a. The user will move to the instructions screen with details on how to properly set

 up the camera and calibration

 3. Click ‘Done’

 a. The user will be presented a screen to input their desired calibration values

 4. Click ‘Start Calibration’
 a. The user will be prompted to place the ball at three positions: on home plate, held

 at the reference height, and on the pitcher’s mound
 b. There will be a 15 second countdown before each picture is taken

 5. After the calibration process, the user will be taken to the tracking screen
 a. From here, the app is fully set up and the camera should not be moved as it would

 compromise the calibration
 b. The ball needs to be in the bounding box for two seconds for the system to arm

 itself

 Appendix 2: Design Considerations
 The team was able to create a working implementation of our app. However, there are certain areas
 of our design that we know can be improved upon in future work. These areas include the YOLO
 model, testing height accuracy, system stress testing, and adding a review section for past pitches.

 First, our YOLO model is very one dimensional, meaning that it is trained in only a single lighting
 conditions in an ideal scenario. While we added augmentations to the images to make the model
 more robust, it likely isn’t enough to cover the various lighting conditions that can be seen during a
 softball game. Training the model on a more diverse dataset will help make it more well-rounded
 for a variety of game conditions.

 Next, further testing should be done on the height calculation. We currently have an accuracy of ±6
 inches; however, because this is the core part of our app, more testing needs to be done to ensure
 that the range is consistent. Further training of our YOLO model will also result in more testing
 being needed for the height calculation as the accuracy of the model can directly affect the height
 calculation.

 Third, our system needs to be fully stress tested. We tested in pretty ideal conditions this semester
 to ensure the core functionality of our app would work in practice. That being said, more rigorous
 testing needs to be done to ensure users are not able to break the app. Rigorous stress testing will
 allow for unknown bugs and errors to be found as the app is pushed to its limits. These kinds of
 tests could include placing the camera in non-ideal positions, having drastic lighting changes occur,
 or having multiple softballs in frame at a single time.

 Finally, we would have liked to have a feature where users could go back and review past pitches
 and how they were called. With a “machine” umpire, users will likely want a way to verify what the
 app saw and see if it is correct. Having a past pitches screen would allow for users to go back and
 review the app's performance and ensure that it is providing accurate results. However, due to
 current limitations with the Ultralytics-Flutter plugin’s proprietary camera controller, we were not
 able to add it successfully.

 Appendix 3: Alternate Designs
 Throughout 491 and 492 we implemented many different prototypes to test the functionality of our
 application. Through testing and future development, the alternative design prototypes were
 overwritten or discarded from the final deliverables. It is important to note the designs that failed,
 and those that are now incompatible as they are a part of the design process and were a part of
 successful developmental cycles by leading our project in more effective direction.

 OpenCV and KCF Tracking

 In the planning phase of our development, we valued the accuracy of a system that integrates both
 machinelearning and non-machine learning techniques for object detection and object tracking.
 We developed multiple softball tracking prototypes that utilized the integration of OpenCV and
 YOLO tools to efficiently compute where a softball is located within a frame while restricting our
 reliance on machine learning models.

 OpenCV is an image processing library for Python and C++ which can use multithreaded
 approaches to quickly analyze an image for specific colors, textures, and patterns. OpenCV also
 offers tracking modules which identify a moving object in frame, such as the KCF tracking
 algorithm.

 In prototypes that were disconnected from the Flutter application, the OpenCV and KCF tracking
 tools performed very well when finding the softball by color, but could often not initially find the
 ball. The YOLO model, with a higher runtime and reliability, was able to initially find the ball and
 routinely check the OpenCV and KCF algorithms are still tracking the softball every 30 frames as
 shown below.

 The YOLO model used within this prototype was a trained on a small collection of images where
 the softball was within 3 feet of the camera and indoors. This training data was too small and did
 not fit our application’s true environment to train an effective model. As our development
 continued, we collected and annotated over 9,000 images in a new YOLO model, which performed
 at 30fps and had very accurate tracking results. The machine learning tracking outperformed the
 non-machine learning OpenCV and KCF algorithms and led us to focus on a machine learning
 object tracking system. Although the integrated tracking system was removed, it taught us the
 importance of replicating training data to the system’s environment to better utalize modern
 computer vision tools.

 C++ Flutter Bridge

 During the initial integration of our softball-tracking solution into our Flutter application, we were
 researching potential ways to create the bridge between our original C++ backend running OpenCV
 and our Flutter frontend. We had experimented with Dart FFI, a native Flutter library capable of
 interacting with C++ code from the front end of our application. We had made progress with
 constructing this bridge, even reaching the point where our model was callable from our front end
 returning with ball coordinates, albeit this process introduced much latency hindering the user
 experience of our application. We managed to obtain frames of real-time tracking which
 dramatically fell short of our project requirements, taking minutes to return each coordinate from
 the backend.

 Our team attempted to reconstruct our application’s communication between the frontend and
 backend and mitigate our CPU consumption by multithreading, passing memory pointers instead
 of images, and decreasing the image size. Ultimately, as we began to adopt a solution revolving
 around using the Ultralytics plugin to allow for automatic camera handling and pipelined model
 processing. The C++ backend prototype was removed as a underperformant alternative to the
 Ultralytics plugin. Although this prototype was removed from future development, it gave our team
 a chance to further investigate our app’s CPU usage and analyze performance issues.

 Past Pitches Screen

 Originally, our application included recordings of past pitches as
 they transpired within a softball game. This was done by using
 Flutter’s CameraController class to record from the camera and
 save the video within the application with an indication of
 “Illegal” or “Valid”. The users could then click the “Past Pitches”
 button on the camera screen to view the last pitch.

 However, after adopting the Ultralytics plugin that used its own
 CameraController, it became difficult to refactor this feature since
 only one CameraController can be active at one time. Regaining
 access to the camera for the Past Pitches screen without heavily
 modifying the underlying source code revolving around the
 Ultralytics plugin would be too invasive to the library and remains
 an incompatible feature.

 The Past Pitches screen prototype still encourages our team to
 find a way to communicate data from previously analyzed pitches
 to the user. With video unavailable, our team has discussed the
 opportunity to include graphs of the coordinates throughout the
 pitch, detected by the model, paired with lines indicating the
 maximum and minimum height requirements.

 Appendix 4: Code Analysis
 There are many directories in our code repository necessary for the Flutter framework. However,
 the bulk of our development lies in the ‘lib’, ‘ultralytics_yolo’ and ‘assets’ folders.

 The assets folders contain the different YOLO models we trained, images, and the mp3 for the
 illegal audio. The best models we obtained from our training were the ‘bestv8-img640.mlmodel’, a
 YOLOv8n model, and the ‘best-yolo11s.mlmodel’, a YOLOv11s model.

 For lib, that contains the various screens including the home page, instructions, calibration, and
 tracking screens. Main.dart routes the user to the various screens of the app. Setup.dart does the
 same things as main.dart, but for once the user enters the setup of the tracking. The rest of the
 .dart files in the views folder represent the various screens a user will interact with when using the
 app. Yolo_screen.dart is the screen where the tracking of the softball is performed. The widgets
 folder contains assets like buttons that can be plugged into various screens. This is one of the main
 benefits of the Flutter framework.

 Finally, the ultralytics_yolo folder contains the entire Ultralytics-Flutter plugin that we included
 locally in our repo. The plugin is open-source, and because we needed to make some
 customizations to the code for it to work for our desired camera orientation, we copied it locally
 and made changes.

