

‭Our senior design project focuses on developing a system to assist umpires in detecting illegal‬
‭pitches in slow-pitch softball games. The problem arises from the challenge of accurately‬
‭determining whether a pitch falls outside the legal bounds of 10 to 12 feet in height, leading to‬
‭inconsistent calls and disputes. Our solution aims to eliminate this ambiguity, allowing umpires to‬
‭focus on other aspects of the game while ensuring fairness and accuracy.‬

‭To address this issue, we are designing a mobile application that leverages computer vision and‬
‭machine learning to analyze softball pitches in real-time. This approach removes the need for‬
‭leagues to invest in expensive or specialized hardware, making our solution cost-effective and‬
‭accessible to a wide range of users. The app uses YOLO (You Only Look Once) for object detection‬
‭and tracking, enabling it to identify the softball and monitor its trajectory throughout the pitch.‬

‭The key design requirements include accuracy in determining pitch legality, minimal interference‬
‭with the flow of the game, and affordability for users. Feedback from current umpires has validated‬
‭these priorities, and our design aligns with their expectations.‬

‭Thus far, we have implemented the YOLO model to run within our Flutter application using a‬
‭plugin developed by the Ultralytics team. Due to the plugins limited functionality though we had to‬
‭alter it to better fit our needs. Additionally, we have developed calibration functionality that allows‬
‭the user to define key reference points—such as the pitcher's mound and home plate—and input‬
‭the camera's height. This calibration maps the physical space into a frame of reference, enabling‬
‭precise height calculations for the pitch and determining whether it is legal.‬

‭Our design meets the defined requirements by ensuring the app runs smoothly on readily available‬
‭iOS devices, avoiding the need for additional hardware. Accuracy is achieved through rigorous‬
‭training of a YOLO model and strict setup instructions. The next steps include adding additional‬
‭features to our app outside of the main functionality, like a past pitches screen.‬

‭By enabling umpires to confidently identify illegal pitches, our product aims to improve the quality‬
‭and fairness of games while maintaining accessibility and usability for all levels of softball leagues.‬

‭Learning Summary‬

‭Summary of requirements:‬

‭-‬ ‭Object detection system to locate a softball at its maximum height during a‬
‭pitch.‬

‭-‬ ‭Detect an illegal pitch when a softball’s maximum height is higher than the‬
‭specific maximum height or below the specific minimum height.‬

‭-‬ ‭Create an audible sound indicating an illegal pitch.‬

‭-‬ ‭The device cannot be physically obstructive to the game.‬

‭-‬ ‭The device must accommodate different fields, lighting, and balls.‬

‭-‬ ‭The device cannot be visually distracting to the game.‬

‭-‬ ‭The device must have a guided and simple setup.‬

‭-‬ ‭The device must have user-adjustable settings for the maximum and‬
‭minimum height for pitches.‬

‭New skills/knowledge acquired that was not taught in courses:‬
‭-‬ ‭Computer Vision‬

‭-‬ ‭Machine learning applications‬

‭-‬ ‭Flutter framework‬

‭-‬ ‭iOS development‬

‭Table of Contents‬
‭1.‬ ‭Introduction‬ ‭5‬

‭1.1.‬ ‭P‬‭ROBLEM‬ ‭S‬‭TATEMENT‬ ‭5‬

‭1.2.‬ ‭I‬‭NTENDED‬ ‭U‬‭SERS‬ ‭5‬

‭2.‬ ‭Requirements, Constraints, And Standards‬ ‭5‬

‭2.1.‬ ‭R‬‭EQUIREMENTS‬ ‭& C‬‭ONSTRAINTS‬ ‭5‬

‭2.2.‬ ‭E‬‭NGINEERING‬ ‭S‬‭TANDARDS‬ ‭5‬

‭3 Project Plan‬ ‭6‬

‭3.1 Project Management/Tracking Procedures‬ ‭6‬

‭3.2 Task Decomposition‬ ‭6‬

‭3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria‬ ‭6‬

‭3.4 Project Timeline/Schedule‬ ‭6‬

‭3.5 Risks And Risk Management/Mitigation‬ ‭7‬

‭3.6 Personnel Effort Requirements‬ ‭7‬

‭3.7 Other Resource Requirements‬ ‭7‬

‭4 Design‬ ‭7‬

‭4.1 Design Context‬ ‭7‬

‭4.1.1 Broader Context‬ ‭7‬

‭4.1.2 Prior Work/Solutions‬ ‭8‬

‭4.1.3 Technical Complexity‬ ‭8‬

‭4.2 Design Exploration‬ ‭9‬

‭4.2.1 Design Decisions‬ ‭9‬

‭4.2.2 Ideation‬ ‭9‬

‭4.2.3 Decision-Making and Trade-Off‬ ‭9‬

‭4.3‬ ‭Proposed Design‬ ‭9‬

‭4.3.1 Overview‬ ‭9‬

‭4.3.2 Detailed Design and Visual(s)‬ ‭9‬

‭4.3.3 Functionality‬ ‭10‬

‭4.3.4 Areas of Concern and Development‬ ‭10‬

‭4.4 Technology Considerations‬ ‭10‬

‭4.5 Design Analysis‬ ‭10‬

‭5 Testing‬ ‭10‬

‭5.1 Unit Testing‬ ‭11‬

‭5.2 Interface Testing‬ ‭11‬

‭5.3‬ ‭Integration Testing‬ ‭11‬

‭5.4‬ ‭System Testing‬ ‭11‬

‭5.5‬ ‭Regression Testing‬ ‭11‬

‭5.6‬ ‭Acceptance Testing‬ ‭11‬

‭5.7‬ ‭Security Testing (if applicable)‬ ‭11‬

‭5.8‬ ‭Results‬ ‭11‬

‭6 Implementation‬ ‭12‬

‭7 Professional Responsibility‬ ‭12‬

‭7.1‬‭Areas of Responsibility‬ ‭12‬

‭7.2 Project Specific Professional Responsibility Areas‬ ‭12‬

‭7.3 Most Applicable Professional Responsibility Area‬ ‭12‬

‭8 Closing Material‬ ‭12‬

‭8.1 Conclusion‬ ‭12‬

‭8.2 References‬ ‭13‬

‭9 Team‬ ‭13‬

‭9.1 T‬‭EAM‬ ‭M‬‭EMBERS‬ ‭13‬

‭9.2 R‬‭EQUIRED‬ ‭S‬‭KILL‬ ‭S‬‭ETS‬ ‭FOR‬ ‭Y‬‭OUR‬ ‭P‬‭ROJECT‬ ‭13‬

‭(if feasible – tie them to the requirements)‬ ‭13‬

‭9.3 S‬‭KILL‬ ‭S‬‭ETS‬ ‭C‬‭OVERED‬ ‭BY‬ ‭THE‬ ‭T‬‭EAM‬ ‭13‬

‭(for each skill, state which team member(s) cover it)‬ ‭13‬

‭9.4 P‬‭ROJECT‬ ‭M‬‭ANAGEMENT‬ ‭S‬‭TYLE‬ ‭A‬‭DOPTED‬ ‭BY‬ ‭THE‬ ‭TEAM‬ ‭13‬

‭Typically Waterfall or Agile for project management.‬ ‭13‬

‭9.5 I‬‭NITIAL‬ ‭P‬‭ROJECT‬ ‭M‬‭ANAGEMENT‬ ‭R‬‭OLES‬ ‭13‬

‭9.6 Team Contract‬ ‭13‬

‭1.‬ ‭Introduction‬

‭1.1.‬ ‭Problem Statement‬

‭In the game of softball, one crucial rule states that a pitch is only legal if the ball reaches its peak‬
‭height within a minimum and maximum height bound during its flight to the batter. Currently,‬
‭umpires must estimate this height by eye for every single pitch: a challenging task that relies heavily‬
‭on personal judgment and can vary from one umpire to another. This reliance on subjective‬
‭estimation can lead to inconsistent calls, potentially altering the outcome of games and affecting‬
‭the fairness and enjoyment of the sport. Players might strike out on pitches that should have been‬
‭deemed illegal, and fans may witness games swayed by questionable decisions.‬

‭These issues highlight a broader problem: the lack of accessible technology to assist in making‬
‭precise, real-time measurements during games. To address this, we are developing an affordable‬
‭and user-friendly device that tracks each pitch using a single camera, accurately measures the ball's‬
‭height using machine learning, and alerts officials when a pitch falls outside the legal bounds. By‬
‭eliminating the guesswork from pitch height estimation, we aim to enhance the accuracy of calls,‬
‭uphold the integrity of the game, and improve the experience for players, umpires, and fans alike.‬

‭1.2.‬‭Intended Users‬

‭Our product is designed to benefit several key groups within the softball community, including‬
‭umpires, players, fans, and coaches.‬

‭1.‬ ‭Umpires‬
‭a.‬ ‭Description‬‭: Umpires are the officials responsible‬‭for enforcing the rules of‬

‭softball during games. They must make quick, accurate decisions under the‬
‭pressure of real-time play, often without technological assistance.‬

‭b.‬ ‭Needs‬‭: Umpires need a reliable method to accurately‬‭determine if a pitch meets‬
‭the legal height requirements, reducing the reliance on subjective judgment and‬
‭minimizing errors that could impact the game's outcome.‬

‭c.‬ ‭Benefits‬‭: Our device provides umpires with precise,‬‭real-time measurements of‬
‭each pitch's height. This technology aids them in making consistent and accurate‬
‭calls, reducing stress and enhancing their confidence in officiating. By supporting‬
‭umpires with accurate data, we help maintain the game's fairness and integrity,‬
‭directly addressing the issues outlined in our problem statement.‬

‭2.‬ ‭Players‬
‭a.‬ ‭Description‬‭: All players in a softball game are directly‬‭affected by the calls made‬

‭by umpires and strive for a fair and competitive environment to showcase their‬
‭skills.‬

‭b.‬ ‭Needs‬‭: Players need assurance that the rules are being‬‭applied consistently so that‬
‭their performance is judged fairly. Batters, in particular, need protection from‬
‭illegal pitches that could unfairly result in strikeouts.‬

‭c.‬ ‭Benefits‬‭: With our device ensuring accurate detection‬‭of illegal pitches, players‬
‭can trust that the game is being officiated fairly. Batters are less likely to be unfairly‬
‭penalized, and pitchers receive clear feedback on the legality of their pitches. This‬
‭fosters a fair playing field and allows players to focus on their performance,‬
‭enhancing the game's overall quality in line with our problem-solving goals.‬

‭3.‬ ‭Fans‬
‭a.‬ ‭Description‬‭: Fans are the spectators who enjoy watching‬‭softball games, whether‬

‭in person at the stadium or through broadcasts. They are passionate about the‬
‭sport and value exciting, fair competition.‬

‭b.‬ ‭Needs‬‭: Fans desire an enjoyable viewing experience‬‭where player skill rather than‬
‭officiating errors determine the game's outcome. They appreciate transparency and‬
‭fairness in how the game is played and called.‬

‭c.‬ ‭Benefits‬‭: By improving the accuracy of pitch legality‬‭calls, our device enhances the‬
‭fairness and excitement of the game, leading to a more satisfying experience for‬
‭fans. They can enjoy the sport knowing that technology is helping to uphold its‬
‭integrity, which aligns with our aim to improve the overall enjoyment of softball.‬

‭4.‬ ‭Coaches and Teams‬
‭a.‬ ‭Description‬‭: Coaches and team staff are responsible‬‭for training players and‬

‭developing game strategies. They work closely with players to improve skills and‬
‭ensure compliance with the rules.‬

‭b.‬ ‭Needs‬‭: Coaches need effective tools to train pitchers‬‭on delivering legal pitches‬
‭and to adjust strategies based on accurate information about gameplay.‬

‭c.‬ ‭Benefits‬‭: Our device can be used during practices‬‭to provide immediate feedback‬
‭to pitchers on the height of their pitches, aiding in skill development and rule‬
‭compliance. During games, accurate officiating supported by our product allows‬
‭coaches to focus on strategy without worrying about inconsistent calls. This‬
‭directly enhances player performance and upholds fair competition, as highlighted‬
‭in our problem statement.‬

‭By serving these users, our product addresses the critical issue of subjective pitch height estimation‬
‭in softball. It promotes fair play, enhances the accuracy of officiating, and improves the overall‬
‭experience for everyone involved in the sport. Our solution connects directly to our overarching‬
‭goal of removing guesswork from the game, ensuring that softball is enjoyable, fair, and competitive‬
‭for all participants‬

‭2.‬ ‭Requirements, Constraints, And Standards‬

‭2.1.‬‭Requirements & Constraints‬

‭Functional Requirements‬

‭-‬ ‭Object detection system to locate a softball at its maximum height during a pitch.‬
‭-‬ ‭Detect an illegal pitch when a softball’s maximum height is higher than the specific‬

‭maximum height or below the specific minimum height. (constraint)‬
‭-‬ ‭Create an audible sound indicating an illegal pitch‬

‭Physical Requirements‬

‭-‬ ‭The device cannot be physically obstructive to the game.‬
‭-‬ ‭The device must be portable to set up on a softball field.‬

‭Environmental Requirements‬

‭-‬ ‭The device must accommodate different fields, lighting, and balls.‬
‭-‬ ‭The device cannot be visually or audibly distracting to the game.‬

‭UI Requirements‬

‭-‬ ‭The device must have a guided and simple setup.‬
‭-‬ ‭The device must have user-adjustable settings for the maximum and minimum height for‬

‭pitches. (constraint)‬

‭Constraints‬

‭-‬ ‭Maximum height (in feet) the softball can reach on a serve.‬
‭-‬ ‭Minimum height (in feet) the softball must reach on a serve.‬
‭-‬ ‭The device cannot be physically obstructive to the game.‬

‭2.2.‬‭Engineering Standards‬

‭The Importance of Engineering Standards (Q1)‬

‭Engineering standards are important because people interact with engineering products every day.‬
‭If there were no engineering standards, that would not only compromise the desired quality of‬
‭engineering products but also affect things like the safety of everyday people. For example, people‬
‭interact with civil engineering like bridges and buildings, and non-physical structures like apps and‬
‭programs. A lack of requirements for these products could result in catastrophic failures of civil‬
‭structures or a breach of confidential personal data from an insecure application. Engineering‬
‭standards help ensure that these types of issues are avoided so people can continue to use these‬
‭products to improve their lives and the lives of others‬

‭Published Engineering Standards (Q2)‬

‭-‬ ‭IEEE 1857.9-2022‬‭provides standards for video encoding/decoding‬‭and analyzing methods.‬
‭These standards apply to all forms of video manipulation, spanning from areas such as‬
‭network video transmission over services such as UDP to computer vision topics such as‬
‭object detection.‬

‭-‬ ‭IEEE P3110‬‭provides the standards for the necessary‬‭API requirements in a computer vision‬
‭implementation. These API abstractions interface with various machine learning‬
‭algorithms and are used to develop computer vision solutions such as OpenCV.‬

‭-‬ ‭IEEE 1008-1987‬‭provides guidelines for proper unit‬‭testing with a codebase. Specifically,‬
‭guidelines exist for proper categories of testing (unit, integration, etc.) and code coverage‬
‭reporting, among other testing-related requirements.‬

‭Engineering Standards Relevancy (Q3)‬

‭After reviewing the three standards, each has varying relevance to our project. Since our primary‬
‭focus is on computer vision, IEEE P3110 is highly applicable. This standard provides guidelines for‬
‭API requirements in computer vision and will help us ensure our project adheres to best practices‬
‭when working with machine learning models like YOLO. It offers a strong foundation for‬
‭structuring our computer vision solution. IEEE 1008-1987 also holds some relevance, as it provides‬
‭useful guidelines for software testing. While our project’s smaller scale, incorporating structured‬
‭unit testing can still improve code reliability. On the other hand, IEEE 1857.9-2022 is less applicable‬
‭since it focuses more on video encoding and compression, which isn’t central to our object‬
‭detection work.‬

‭Other Applicable Standards (Q4)‬

‭Some of the standards we found that differed from those provided that might be at least somewhat‬
‭applicable to our project are below. IEEE Standard Digital Interface for Programmable‬
‭Instrumentation. This standard applies because we use equipment and information that takes in‬
‭different measurements. We will use different types of instrumentation that may be programmable‬
‭to detect the softball. IEEE Standard for Application Programming Interfaces (APIs) for Deep‬
‭Learning (DL) Inference Engines. This engineering standard is applicable because we are‬
‭programming a solution to consistently and accurately find the height of a softball, including deep‬
‭learning and AI-based detection algorithms. IEEE Standard Letter Symbols for Units of‬
‭Measurement (SI Customary Inch-Pound Units, and Certain Other Units). This standard is‬

‭applicable because it ensures that we incorporate the appropriate symbols for our measurement‬
‭and that it is understood clearly using accurate measurements and symbols.‬

‭Modifying Our Project to Incorporate Engineering Standards (Q5)‬

‭Since our design is not finalized as we continue to test and prototype different designs, we don’t‬
‭need to make any modifications now. However, several of these standards must be considered as we‬
‭proceed with our design. Firstly, as we develop the software component of the project, we will need‬
‭to keep in mind IEEE 1008-1978 regarding unit testing. We need to ensure that we are writing the‬
‭software in a way that can be easily tested. We will also need to consider IEEE P3110 which covers‬
‭standards with computer vision. Since many of us have never built an official project using‬
‭computer vision, it is not natural to consider these standards. Moving forward, standards like this‬
‭one must be considered during design‬

‭3 Project Plan‬

‭3.1 Project Management/Tracking Procedures‬

‭We decided to adopt an AGILE methodology to manage our project. There are complex‬
‭components we need to manage with our app. These components include our height detection‬
‭script utilizing a machine learning approach and a mobile app utilizing Flutter and the Ultralytics‬
‭Flutter plugin. To make development more manageable, we can divide the work into AGILE sprints‬
‭with smaller goals, so we are not trying to tackle the entire project at once. This will improve our‬
‭understanding of individual project components and help make a full implementation easier. To‬
‭keep track of our progress, we are utilizing Git issues coupled with personal branches for individual‬
‭development. Having an issues board will help us manage what tasks must be done. Using personal‬
‭branches will help isolate development so we can develop individual components more efficiently‬
‭without accidentally breaking the project's main branch or having more than one person alter the‬
‭same file in different ways.‬

‭3.2 Task Decomposition‬

‭These tasks are intentionally left broad since we have not made final decisions on the entire design.‬
‭Based on the AGILE methodology, many of these tasks will be adjusted as development continues‬
‭and we receive feedback from the client. Any testing and prototyping would also affect our final‬
‭implementation of these tasks. With this task decomposition, we split the project into two major‬
‭tasks: detecting illegal pitches and developing the mobile application. These two tasks are the most‬
‭significant challenges and are further broken into subtasks. In creating a model-compatible‬
‭frontend we needed height calculation, pitch detection, and setup techniques. In developing an‬
‭object tracking model we must collect, annotate, and augment data for training. Integration of the‬
‭model and frontend would be completed for a fully functional application.‬

‭3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria‬

‭In an AGILE development process, these milestones can be refined with successive‬
‭iterations/sprints (perhaps a subset of your requirements applicable to those sprint).‬

‭3.4 Project Timeline/Schedule‬

‭Above is our proposed AGILE project timeline, featuring a clearly outlined sequential list of‬
‭milestones. Our project has been separated into four parallel-running distinct categories: UI‬
‭enhancements, testing, (object) tracking refinemenst, and collecting user feedback . Following an‬
‭AGILE methodology, we have separated our project timeline into roughly one-week sprints where‬
‭certain tasks are scheduled for completion. Each bar on the above Gantt chart represents a‬
‭deliverable within an AGILE timeframe set to expire at the bar's end. Holistically, the above Gantt‬
‭chart can be summarized in sprints as follows:‬

‭Timeframe/Deliverables‬

‭02/03 - 02/09 (Sprint 1)‬

‭-‬ ‭Create test plan‬
‭-‬ ‭Develop prototype plans‬

‭02/10- 02/16 (Sprint 2)‬

‭-‬ ‭Initial tests‬

‭02/17 - 02/23 (Sprint 3)‬

‭-‬ ‭Improve runtime‬
‭-‬ ‭Improve functionality‬

‭02/23 -03/02 (Sprint 4)‬

‭-‬ ‭Add Visuals‬
‭-‬ ‭Add Videos‬
‭-‬ ‭Start trying to combine app with model‬

‭03/03 -03/09 (Sprint 5)‬

‭-‬ ‭Test product with users‬
‭-‬ ‭Keep testing‬

‭03/10 -03/16 (Sprint 6)‬

‭-‬ ‭Continue Testing‬

‭-‬ ‭Fix bugs and improve optimality‬

‭03/17 - 03/23 (Sprint 7)‬

‭-‬ ‭Continue Testing‬
‭-‬ ‭Make sure tests are going smoothly‬

‭03/24 - 03/30 (Sprint 8)‬

‭-‬ ‭Apply feedback to app‬

‭03/31 - 04/06 (Sprint 9)‬

‭-‬ ‭Continued improvement‬
‭-‬ ‭Fix issues and or areas that need improvement‬

‭04/07 - 04/13 (Sprint 10)‬

‭-‬ ‭Test more with added improvements‬
‭-‬ ‭Try and find and then fix any issues‬

‭04/14 - 04/20 (Sprint 11)‬

‭-‬ ‭Add final functionalities of the app that will be used‬

‭04/21 - 04/27 (Sprint 12)‬

‭-‬ ‭Present final product to users for testing‬
‭-‬ ‭Make final adjustments and improvements of the app/code‬

‭04/28 - 05/04 (Sprint 13)‬

‭-‬ ‭Finish the full working app‬
‭-‬ ‭Complete all final deliverables‬

‭3.5 Risks and Risk Management/Mitigation‬

‭Sprint 1:‬

‭-‬ ‭Risks:‬
‭-‬ ‭Our current implementation of the opencv C++ backend with flutter isn’t‬

‭ideal, as the implementation and usage of both of them currently are separate‬
‭and need to be implemented together if we want to make any sort of progress.‬

‭-‬ ‭Mitigation:‬
‭-‬ ‭Try and merge our flutter project app development with our new C++ backend of‬

‭the opencv implementation‬

‭Sprint 2:‬

‭-‬ ‭Risks:‬

‭-‬ ‭The main issue is that running yolo on the phone without utilizing Apple’s‬
‭ML framework causes significant frame hangs and stutters‬

‭-‬ ‭We are also having difficulty translating the frame coordinates for the raw‬
‭image data to the coordinate system flutter is using.‬

‭-‬ ‭Mitigation:‬
‭-‬ ‭Potentially implement the Ultralytics plugin model that can better run the yolo‬

‭model much faster and with less framerate loss. Could also run faster than before‬
‭as well.‬

‭Sprint 3:‬

‭-‬ ‭Risks:‬
‭-‬ ‭YOLO through the Ultralytics functions still need to be integrated into‬

‭Flutter’s tracking thread. A finer-tuned model can also help YOLO’s accuracy‬
‭in determining only softballs within the frame.‬

‭-‬ ‭The height calculations when self-identifying the ball still needs to be unit‬
‭tested, and there is currently an error with iOS setup.‬

‭-‬ ‭Grid layout still needs to be implemented.‬
‭-‬ ‭Mitigation:‬

‭-‬ ‭Implement the grid layout as quickly as possible, allow the integration of YOLO‬
‭through Ultralytics in flutter’s tracking thread. Test and ensure the accuracy of the‬
‭height calculation‬

‭Sprint 4:‬

‭-‬ ‭Risks:‬
‭-‬ ‭Ultralytics still has some issues when implementing this and the overall‬

‭implementation of all of these parts still needs to be studied and merged together.‬
‭-‬ ‭Mitigation:‬

‭-‬ ‭Continue debugging the issues with Ultralytics YOLO and make sure that we start‬
‭merging the other aspects together.‬

‭Sprint 5:‬

‭-‬ ‭Risks:‬
‭-‬ ‭Currently, all of our components are separate‬
‭-‬ ‭We need to get a central screen that meshes everything we have worked on to‬

‭beg to not have a central screen yet that we can test our current info and‬
‭analysis on yet.‬

‭-‬ ‭Still haven’t really tested anything yet with actual on field tests‬
‭-‬ ‭Mitigation:‬

‭-‬ ‭We need to get a central screen that meshes everything we have worked on to‬
‭begin doing real live tests.‬

‭Sprint 6:‬

‭-‬ ‭Risks:‬

‭-‬ ‭Current roboflow model that we implemented from last semester isn’t entirely‬
‭accurate, however it was tested on different angles and types of videos that aren’t‬
‭very similar to what we are going to test on.‬

‭-‬ ‭Mitigation:‬
‭-‬ ‭Implement a new roboflow model that is trained mainly if not completely on the‬

‭actual camera angle and general conditions that we will be using the app on, so a‬
‭side camera angle on a field with the ball being thrown in the air across the screen.‬

‭Sprint 7:‬

‭-‬ ‭Risks:‬
‭-‬ ‭The Roboflow annotations still need to be completed. This takes time, and a‬

‭new model can be built once finished.‬
‭-‬ ‭The Ultralytics plugin requires portrait orientation, while our application‬

‭requires landscape mode. This causes an error in the sizing and orientation of‬
‭the camera preview.‬

‭-‬ ‭The Ultralytics plugin currently does not update the ball coordinates variable.‬
‭-‬ ‭Mitigation:‬

‭-‬ ‭Try to annotate the new roboflow model as quickly as possible, and try and fix the‬
‭orientation issues of Ultralytics forcing portrait, by potentially changing the rest of‬
‭the app to portrait orientation. Try and fix the issue of plugin not updating the‬
‭coordinates or not‬

‭Sprint 8:‬

‭-‬ ‭Risks:‬
‭-‬ ‭The Roboflow annotations are still being worked on‬
‭-‬ ‭The Ultralytics plugin requires a TensorFlow Lite model for Android.‬
‭-‬ ‭The Ultralytics plugin currently does not update the ball coordinates variable.‬

‭-‬ ‭Mitigation:‬
‭-‬ ‭Finish annotating the roboflow new model images, as well as try and implement‬

‭the new tensorflow Lite model for the ability to run our roboflow model on‬
‭android as well.‬

‭Sprint 9:‬

‭-‬ ‭Risks:‬
‭-‬ ‭The orientation fixes for IOS changed the Android orientation to be off now,‬

‭so we might need more platform specific orientation changes.‬
‭-‬ ‭Further testing and enhancing of our current model‬
‭-‬ ‭Further work and implementation of pitching box and detecting when a pitch‬

‭is being thrown and not just any ball in frame.‬
‭-‬ ‭Mitigation:‬

‭-‬ ‭Potentially fix platform specific orientation changes or switch to only one platform.‬
‭Allow the pitching box to have an arming system that will arm when ball is‬
‭detected for a certain amount of time within the pitching box.‬

‭Sprint 10:‬

‭-‬ ‭Risks:‬
‭-‬ ‭Our conversion of YOLO coordinates to standard image size is not‬

‭functioning. We need a new way of mapping our coordinates used in height‬
‭calculations.‬

‭-‬ ‭Full functionality is present within individual components and need to be‬
‭integrated into the full system.‬

‭-‬ ‭Mitigation:‬
‭-‬ ‭Switch coordinate system and calculations to only one form of coordinates,‬

‭preferably just use the YOLO coordinate system for everything to standardize it.‬
‭Start working on full integration and test to make sure everything works together‬
‭well.‬

‭Sprint 11:‬

‭-‬ ‭Risks:‬
‭-‬ ‭YOLO red ball marker‬

‭-‬ ‭When the Yolo model is executed using the iOS CoreML framework,‬
‭the ball’s x and y coordinates are automatically captured as values‬
‭between [0, 1]. Currently, the Ultralytics plugin converts these‬
‭coordinates back to pixels based on an assumed aspect ratio.‬

‭-‬ ‭UI Fixes‬
‭-‬ ‭Overflowing widgets‬
‭-‬ ‭Instructions page is outdated‬

‭-‬ ‭Illegal logic listener‬
‭-‬ ‭When ‘tracking’ is triggered to True, listener must collect and analyze‬

‭the ball coordinates throughout the pitch until a max height is‬
‭reached.‬

‭-‬ ‭Sound should be played with the max height found is out of bounds.‬
‭-‬ ‭Mitigation:‬

‭-‬ ‭We could pass the x and y values directly to our screen, which calculates‬
‭height, and then scale the ball’s position to fit our screen dimensions.‬

‭-‬ ‭Update instructions page, try and fix overflow.‬
‭-‬ ‭Implement the illegal sound audio to be played at the correct time.‬

‭Sprint 12:‬

‭-‬ ‭Risks:‬
‭-‬ ‭The presentation and design document are not yet complete.‬
‭-‬ ‭Do the finishing touches to our project, specifically small UI changes and‬

‭making sure that the app runs smoothly and as accurately as possible.‬
‭-‬ ‭Mitigation:‬

‭-‬ ‭Finish up working on the presentation and design document as early as possible.‬
‭-‬ ‭Fix and update the final touches on our project.‬

‭3.6 Personnel Effort Requirements‬

‭Team Member‬ ‭Task Descriptions‬ ‭Hours Worked‬

‭Sullivan Fair‬ ‭YOLO Model development, Helped integrate‬
‭Ultralytics-Flutter plugin, Gathered pitching data,‬
‭Creating arming system for tracking, Refined Flutter‬
‭screens, Performed user testin and gathered feedback‬

‭129‬

‭Casey Gehling‬ ‭Flutter screen development, C++/Flutter integration‬
‭research, codebase hygiene maintenance, field‬
‭research, video caching implementation, client‬
‭interaction/team interaction‬

‭107‬

‭Ethan Gruening‬ ‭Prototype height calculation techniques, collect‬
‭pitching data and videos, continuously developed and‬
‭improved all Flutter screens (instructions, setup,‬
‭tracking), field test for development, conducted user‬
‭and model testing, weekly update presentations, and‬
‭developed team website.‬

‭170‬

‭Josh Hyde‬ ‭Prototype object detection, research on different‬
‭models and potential solutions, testing videos, Flutter‬
‭screen work, illegal height lines, grid lines, android‬
‭implementation work,‬

‭124‬

‭Cameron Mesman‬ ‭Flutter screen mock-ups, integrating C++ code into‬
‭flutter, integrating illegal pitch audio into flutter code,‬
‭field testing, unit testing‬

‭114‬

‭Andrew Vick‬ ‭Prototype object detection code, translate python‬
‭scripts into C++, prototype detection and tracking code‬
‭running on iPhone, Integrate tracking code and object‬
‭detection‬

‭120‬

‭3.7 Other Resource Requirements‬

‭Developing a mobile application, our team already owns cell phones to test our Flutter applications‬
‭on iOS operating systems. The primary resources our team has and will continue utilizing are Iowa‬
‭State’s recreational softball fields. Field availability is crucial for the research and testing for proper‬
‭camera setup, object detection, and in-game functionality. Field reservations will be made as‬
‭needed for future testing.‬

‭4 Design‬

‭4.1 Design Context‬

‭4.1.1 Broader Context‬

‭Area‬ ‭Description‬ ‭Examples‬
‭Public health,‬
‭safety, and‬
‭welfare‬

‭Our project is a bystanding officiary to an‬
‭existing softball game, an environment‬
‭with a high risk for player injury. Our‬
‭design must be non-intrusive and not be in‬
‭the way of gameplay. There should be little‬
‭to no contact between the game activity‬
‭and our physical device to ensure public‬
‭safety.‬

‭Considering public safety, our setup‬
‭is a mobile device placed on a mount‬
‭along the fence. This ensures‬
‭minimal physical interaction‬
‭between the players and the device,‬
‭limiting additional risk for the‬
‭players.‬

‭Global, cultural,‬
‭and social‬

‭Slow-pitch softball is a variation of a‬
‭typical softball game for more novice‬
‭players. Local leagues and amateur‬
‭slow-pitch players are our target‬
‭communities and it is our mission to‬
‭ensure this device is catered to their‬
‭financial and accessible needs.‬

‭As engineers, our social and ethical‬
‭responsibility is to create a design to‬
‭accommodate local leagues. Our‬
‭design as a mobile application opens‬
‭our user base to all people with‬
‭smartphones. This addresses the‬
‭low-cost and portable solution that‬
‭local leagues would require.‬

‭Environmental‬ ‭Since our project is very niche, there is‬
‭little to no environmental impact when‬
‭using our product. However, it is‬
‭important to recognize the environmental‬
‭impact of materials and power‬
‭consumption of the operating devices.‬

‭Our product can be downloaded onto‬
‭a user’s smartphone to limit‬
‭additional electrical components.‬
‭Additionally, a power supply for the‬
‭smartphone will need to be provided‬
‭and may require a battery charger for‬
‭prolonged extended use.‬

‭Economic‬ ‭Catering to local slow-pitch leagues, we‬
‭must consider how our product will‬
‭impact the league's funds for both umpire‬
‭training and operation.‬

‭Our product will be affordable for all‬
‭users within a slow-pitch league‬
‭since it requires an existing‬
‭smartphone. A simple setup ensures‬
‭that there will be little time training‬
‭umpires to use the application or set‬
‭it up before a game.‬

‭4.1.2 Prior Work/Solutions‬

‭Include relevant background/literature review for the project (cite at least 3 references for literature‬
‭review in IEEE Format. See link:‬
‭https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf‬‭)‬

‭Beginning our discussions on our project design, we researched existing products and solutions for‬
‭cameras that can track balls within a sports setting. Analyzing the existing products, their user‬
‭reviews, and their targeted impact helped our team decide what approach would best suit our‬
‭project.‬

https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf

‭The first product we researched was the Specialized Imaging Tracker 2, a high-speed fast projectile‬
‭measurement camera. This camera has three-axis rotation for camera positioning and is‬
‭programmable for customization. Many users liked the full remote operation, multiple operating‬
‭modes, tight accuracy error margins, and no need for calibration. However, this is a research-grade‬
‭camera with a high cost and is very large. Considering our use case, local slow-pitch leagues would‬
‭appreciate a camera with small error bounds and little to no calibration. Additionally, it's essential‬
‭for our users to have an affordable and portable option for recreational use. The Specialized‬
‭Imaging Tracker 2 may be too advanced for the operating scenario and out of the price range for‬
‭local leagues.‬

‭A similar product used in professional sports games is the Veo 3 Sports Cam. This is a 360-degree‬
‭camera that not only tracks sports balls but also tracks players, displays heat maps, match stats, and‬

‭tags game actions. This device is known for its object detection accuracy and‬
‭long battery life. Users can also live stream their sports games through this‬
‭camera. These features would benefit local softball leagues, though they are‬
‭not needed for operating as a slow-pitch officiary. The downside to this‬
‭product is it costs $2,400 and requires a subscription to operate. Used in a‬
‭professional sense, the Veo 3 Sports Cam is a successful product. Its features‬
‭may not be needed for the primary operations of a slow-pitch officiary tool;‬
‭however, the high standard for preserving the integrity of the game with an‬
‭accurate system gives users the confidence to use the product in game settings.‬

‭The Pocket Radar Smart Coach is another product specializing in ball‬
‭detection in a softball setting. This‬

‭product is a small device, about the size of a smartphone,‬
‭and records a clip of a softball pitch and its speed. The‬
‭device is compatible with a mobile app that saves the video‬
‭and speed of pitches. With a strong user interface, there are‬
‭many positive user reviews. Users typically buy this product‬
‭for the connection to their mobile device, the ability to share‬
‭and review their pitches, and a cost-effective solution with a‬
‭portable design. The Pocket Radar targets users who‬
‭recreationally play and practice softball and baseball. Their‬
‭isolation of extra sensors and cameras into a handheld‬
‭device makes it accessible. A drawback to creating a small device is there is low battery life that‬
‭limits users to a small usage time. The lower-quality camera has a more significant error bound‬
‭than professional cameras, with a 1 mph error. Although this device has a small battery life and a‬
‭more significant error bound, it is more tailored for local and recreational users, receiving positive‬
‭feedback for their specific use cases.‬

‭4.1.3 Technical Complexity‬

‭Our slow-pitch softball application has several components that integrate together mathematical,‬
‭engineering, and social challenges. Our engineering challenges can be split into two main modules:‬
‭the frontend user experience and the height detection. The project's technical complexity would be‬
‭a large project to design, prototype, and test. Considering this needs to be developed to be‬

‭affordable and portable for local leagues, this increases the complexity as more readily available‬
‭technologies should be used for a wider user base with lower costs.‬

‭The height detection component of the project will require using a camera feed and‬
‭machine-learning object detection techniques and existing libraries in tandem. Additionally, object‬
‭detection alone will not be enough to determine height; a technique must be found to coordinate‬
‭the ball’s location to a specific height through geometric calculations or calibrated values. With the‬
‭limited existing products, our team must find our own solution to determining height using‬
‭engineering principles and practices. Once accomplished, there can be further development to‬
‭increase the fps or computation time for frame analysis. As an open-ended component of the‬
‭project, the technical design, prototyping, and testing is a true example of an engineering problem‬
‭within the real world.‬

‭The height detection backend component is the application’s “computational brain.” Gathering‬
‭calibration information, collecting camera frames, and setting maximum and minimum heights will‬
‭need to be incorporated into the system’s frontend display. A user would interact with the program‬
‭in several ways to start, end, and view the officiary logs. It is essential to develop an accessible and‬
‭guiding frontend for umpires and players to experience a seamless setup and collection process. The‬
‭compatibility of the frontend and the backend is also very important. This module is a technically‬
‭advanced project, not only developing a user interface but also stitching it with the backend’s‬
‭operations and reporting its output.‬

‭In total, the technical components of this project provide complex engineering problems that‬
‭match the industry standards as a real-world software project.‬

‭4.2 Design Exploration‬

‭4.2.1 Design Decisions‬

‭A primary design decision was what system we would use for the camera collection and user‬
‭interface. This decision will define what our users will need to purchase, calibrate, and gain‬
‭familiarity with when running our application. From a technical standpoint, using multiple cameras‬
‭would gain more data points to pinpoint the exact height of the ball. However, developing this‬
‭product specifically for the ease and affordability of local slow-pitch leagues, we decided to‬
‭implement this application on a singular mobile device. This design decision increases the project's‬
‭technical complexity but better suits our user base. The application was chosen to be developed‬
‭using Google’s app development platform, Flutter, which can be compiled to run on both Android‬
‭and iOS, however our development is only focussed and works with IOS. Allowing anyone with a‬
‭mobile device to install our application invites many users to interact with the widget-based‬
‭accessible program for IOS. This was our most critical design decision, led by our social and ethical‬
‭responsibility and our user needs.‬

‭Another design decision was the technologies to use in the object detection of the softball within‬
‭the camera frame. This decision was based on the compatibility with Flutter, the speed of the‬
‭library’s methods, and the accuracy. After careful consideration and research, we decided to utilize‬
‭the Ultralytics Flutter plugin, which allows us to efficiently run a custom-trained YOLO model for‬
‭object detection. The plugin provided the best performance compared to hybrid solutions. Using‬
‭a custom YOLO model for our object detection allows us to have complete control over how we‬

‭want to refine the machine learning algorithm to best track softballs in out application. The plugin‬
‭also offers an easy easy to switch which model we are running, allowing us to test models more‬
‭efficiently. Overall, this decision balances performance with freedom of development, which‬
‭complements the flexibility of our implementation.‬

‭The final major design decision was the height calculation technique used to take in the position of‬
‭a softball within a camera frame and output a specific height. After researching, the vertical pixel‬
‭distance is constant and can be converted to feet when calibrated with known heights and a horizon‬
‭line (the line from the home plate to the pitcher’s mound). This was found by placing a camera‬
‭equidistant from the home plate and the pitcher’s mound, selecting where both are located within‬
‭the frame and where a known height exists along the horizon line. The image below shows the‬
‭equal segments representing 2ft.‬

‭We now have a technique to analyze the (x,y) of the softball and determine if it lies within the‬
‭maximum and minimum height bounds set by the user.‬

‭4.2.2 Ideation‬

‭The design decision we struggled with the most was finding and deciding on the height detection‬
‭technique. As mentioned in section 4.2.1, we finalized the decision for finding the corresponding‬
‭ground line below the pitch from home plate to pitcher's mound and identifying a known height to‬
‭get the vertical pixel-to-feet ratio and turn the detected softball’s (x,y) coordinates into a height‬
‭value. There were other prototyped and researched height calculation techniques that we‬
‭considered for the final design:‬

‭●‬ ‭Multi-Camera Detection‬
‭○‬ ‭Set up three cameras in different locations throughout the field.‬
‭○‬ ‭Run the object detection on all the cameras and determine the ball's distance from‬

‭each camera with the camera’s detected radius.‬
‭○‬ ‭You can use each camera’s height to triangulate the exact location of the ball,‬

‭including height.‬
‭○‬ ‭This violates our design choice for a single camera.‬

‭●‬ ‭Machine Learning‬
‭○‬ ‭Given a machine learning model the distance to the softball, calculated by the pixel‬

‭radius of the detected softball, and the (x,y) coordinates, a machine learning model‬
‭will guess the height.‬

‭○‬ ‭After many iterations of training the model, we found it inconsistent and widely‬
‭inaccurate.‬

‭○‬ ‭The search for a geometric calculation technique was needed for fast and accurate‬
‭return values.‬

‭●‬ ‭Known Radius Geometry‬
‭○‬ ‭With the assumption that the radius stays constant for all softballs, we can use the‬

‭number of pixels of the detected softball to find its distance from the camera‬
‭○‬ ‭Given its (x,y) coordinates, we can determine the angle from the camera and use‬

‭●‬ ‭Pitching Line Calibration‬
‭○‬ ‭The home plate and pitcher’s mound are identified within the camera frame‬
‭○‬ ‭The pixel-to-distance ratio can be calculated with the known distance between the‬

‭bases.‬
‭○‬ ‭The pixel-to-distance ratio was inaccurate as the vertical ratio of pixels differs from‬

‭the horizontal ratio.‬
‭○‬ ‭The ratio found in this method will only determine horizontal distances, not‬

‭vertical heights.‬
‭○‬ ‭The search for a vertical distance conversion is needed to find the height of a given‬

‭(x,y) point.‬
‭●‬ ‭Known Heights Calibration‬

‭○‬ ‭The home plate, pitcher’s mound, and known heights are identified within the‬
‭camera frame‬

‭○‬ ‭The vertical pixel-to-distance ratio can be calculated from the home plate to the‬
‭pitcher’s mound line and known height’s lines.‬

‭○‬ ‭The height can be calculated given the (x,y), getting the number of pixels from the‬
‭pitching line, and translating it into feet.‬

‭○‬ ‭Used in the final design.‬

‭4.2.3 Decision-Making and Trade-Off‬

‭Design Option‬ ‭User Compatibility‬ ‭Observed‬
‭Accuracy/Performance‬

‭Mathematically‬
‭Supported‬

‭Multi-Camera‬
‭Detection‬

‭3/10‬
‭It would require users‬
‭to place and have‬
‭access to multiple‬
‭cameras running the‬
‭application‬

‭9/10‬
‭Research shows this‬
‭method is fairly‬
‭accurate in‬
‭triangulating a point,‬
‭but the camera‬
‭connection will delay‬
‭the computation.‬

‭10/10‬
‭Triangulation is a‬
‭technique used in‬
‭satellites for GPS‬
‭tracking for its‬
‭accuracy.‬

‭Machine Learning‬ ‭10/10‬
‭No setup would be‬
‭needed as the‬
‭machine learning‬
‭model will handle the‬
‭field differences.‬

‭4/10‬
‭The machine learning‬
‭algorithm struggled to‬
‭accurately depict‬
‭heights when the‬
‭camera was moved into‬
‭a new environment.‬

‭5/10‬
‭Machine learning is‬
‭the analysis of data‬
‭trends, not a direct‬
‭hard-coded‬
‭mathematical‬
‭relation between ball‬

‭position and height.‬

‭Known Radius‬
‭Geometry‬

‭9/10‬
‭The height of the‬
‭camera would need to‬
‭be inputted by the‬
‭user.‬

‭3/10‬
‭The radius of the ball‬
‭becomes very small‬
‭when the camera is‬
‭placed far away, so the‬
‭exact distance jumps‬
‭when the radius‬
‭increases by one pixel.‬

‭4/10‬
‭The angle of the ball‬
‭to the camera based‬
‭on its position in the‬
‭frame varies from‬
‭camera to camera.‬

‭Pitching Line‬
‭Calibration‬

‭7/10‬
‭You would have to‬
‭select 2 points on the‬
‭camera feed as a part‬
‭of the setup.‬

‭8/10‬
‭The observed height‬
‭looked fairly accurate‬
‭when measuring a few‬
‭trials in person, but‬
‭reading larger heights‬
‭prompted larger errors‬

‭7/10‬
‭The horizontal‬
‭pixel-to-distance‬
‭conversion ratio is‬
‭similar to vertical,‬
‭but not quite the‬
‭same.‬

‭Known Heights‬
‭Calibration‬

‭6/10‬
‭You would have to‬
‭select 4 points on the‬
‭camera feed as a part‬
‭of the setup.‬

‭9/10‬

‭The observed‬
‭calculated heights‬
‭seemed accurate, and‬
‭the vertical distance‬
‭distribution of pixels‬
‭was visually equivalent.‬

‭9/10‬
‭The vertical known‬
‭heights are‬
‭equidistant when‬
‭viewed and can be‬
‭used to calculate a‬
‭strong vertical‬
‭pixel-to-distance‬
‭ratio‬

‭OpenCV‬ ‭3/10‬
‭Very slow and isn’t‬
‭very practical for an‬
‭app that uses opencv‬
‭to be usable for most‬
‭users.‬

‭5/10‬
‭Could detect the balle‬
‭quite accurately, but‬
‭only up close. Not as‬
‭practical for an app to‬
‭use‬

‭7/10‬
‭Realistically, opencv‬
‭is quite‬
‭mathematically‬
‭supported, it uses‬
‭well-know strategies‬
‭to be able to detect‬
‭things‬

‭Ultralytics YOLO‬ ‭7/10‬
‭Easy to integrate into‬
‭mobile apps, but takes‬
‭a while to integrate‬
‭with roboflow pytorch‬
‭files.‬

‭9/10‬
‭Real-time object‬
‭detection is accurate‬
‭and consistent across‬
‭varied environments‬
‭with good lighting.‬

‭8/10‬
‭Uses convolutional‬
‭neural networks,‬
‭which are‬
‭mathematically‬
‭grounded but‬
‭abstract‬

‭We chose the known heights calibration because of the mathematical accuracy it provides. The‬
‭observed height still needs to be rigorously tested but has the most significant potential of the‬
‭options. The multi-camera detection option was not considered because it did not align with our‬
‭cost-effective user needs and requirements for fast computations.‬

‭4.3‬ ‭Proposed Design‬

‭4.3.1 Overview‬

‭Starting with the Flutter app on a mobile device, users will have access to set up calibration values‬
‭(min height, max height, and reference height) for the camera to fit their specific environment.‬
‭When they enter the tracking screen, our app will utilize the Ultralytics-Flutter plugin to access‬
‭their device’s camera and begin feeding it into our YOLO model. With the plugin, we are able to‬
‭execute the model in the Flutter environment. The YOLO model will track the ball based on a‬
‭custom dataset that we created. The model will then return the coordinates of the ball which we‬
‭can then use to calculate the height using our pixel conversions. In addition, we do not want our‬
‭model to be tracking the height of the ball all the time as that would result in illegal calls being‬
‭made when the ball is in play. So, we also developed an ‘arming’ system that involves drawing a‬
‭bounding box around the pitcher’s mound. When the ball is found in that box for two seconds, our‬
‭tracking algorithm triggers and the app begins checking for an illegal pitch.‬

‭4.3.2 Detailed Design and Visual(s)‬

‭Calibration:‬

‭●‬ ‭Use YOLOv8 model to track the ball and collect the coordinates of the home plate, a‬
‭reference height, and the pitchers mound.‬

‭●‬

‭Calculate Height:‬

‭●‬ ‭Use YOLOv8 model to track the ball and collect the coordinates when pitched‬

‭●‬

‭System Arming:‬

‭●‬ ‭Map the Pitcher’s Bounding Box‬

‭○‬
‭●‬ ‭Box Status Indicators (Red, Yellow, Green)‬

‭○‬

‭.‬

‭4.3.3 Functionality‬

‭4.3.4 Areas of Concern and Development‬

‭Currently, we have a complete implementation of our app. Users are able to specify the known‬
‭height in the app, and through our calibration process, are able to use the app to track the height of‬
‭a softball. However, the main area of concern for our application is the robustness and accuracy of‬
‭our machine learning model. In the model’s current state, it is not sufficiently trained on all of the‬
‭various lighting conditions that may be present during a softball game. To mitigate this issue, the‬
‭model can be trained further on datasets with more lighting variety to increase the overall accuracy.‬
‭In addition, we have been experimenting with different versions of YOLO models, mainly YOLOv8‬

‭and 11. We need to be able to find the model that provides the best combination of accuracy and‬
‭performance, which is the end goal of making it best for our users.‬

‭4.4 Technology Considerations‬
‭Our project consists of multiple components that help integrate the two main components of our‬
‭design: object detection and mobile app development. We use Google’s app development tool‬
‭Flutter, which can be compiled to run on an Apple iPhone, Android mobile device, or mobile‬
‭emulators. However, due to compatibility issues with the Ultralytics plugin, we have prioritized the‬
‭IOS platform for our application. Flutter uses Dart for an accessible widget-based design. Flutter’s‬
‭plugin functionality allows a smoother cross-platform development when utilizing device‬
‭components such as the camera. Using Flutter, we can satisfy our technical challenges of developing‬
‭an aesthetically pleasing and accessible user interface with an Ultralytics backend.‬

‭Integrating into Flutter’s backend, we use the Ultralytics-Flutter plugin to track the softball in the‬
‭camera frame via machine learning. There exist many sports ball tracking systems currently on the‬
‭market. However, these systems typically guarantee accuracy with a multi-camera setup with‬
‭expensive, high-quality cameras. Our design accommodates local league use with a camera on a‬
‭mobile device. With a singular camera on the field providing one plane of vision, our application’s‬
‭accuracy relies on precisely detecting the softball within a camera frame. We do this using a custom‬
‭trained YOLO model, which detects an object using machine learning. With our machine learning‬
‭approach, we can use known heights provided during calibration to calculate the height using the‬
‭ball coordinates returned from the YOLO model.‬

‭4.5 Design Analysis‬

‭Using our machine learning based design, we have been able to fully integrate our object detection‬
‭and height calculation methods into our app. The Ultralytics plugin allowed for a seamless‬
‭integration of our YOLO model into our Flutter environment. Currently, our app is able to create‬
‭the pixel conversions we need to calculate height using provided known height values, our YOLO‬
‭model then tracks the ball and returns the coordinates where it was found, and we use those‬
‭coordinates in our height calculation to return the height of the ball. With this design, we have‬
‭confirmed that it is possible to determine the height of the ball using a single camera.‬

‭From here, further refinements of our machine learning model are needed to account for the‬
‭various conditions that can be present during a softball game. Currently, our model provides‬
‭accurate results under ideal conditions, but we want to ensure that our users can utilize our app‬
‭under all conditions. Specifically, our model occasionally detects objects that are not softballs,‬
‭meaning that the model is either overtrained, or is not trained well enough. Through model‬
‭refinements and further training, we expect that our app can be completely functional under all‬
‭conditions. We also need to ensure the efficiency of our app. The YOLO model does require‬
‭reasonable computation power, which has revealed issues when doing things like screen recording‬
‭the phone while running our app, which often results in crashing. While this is a specific scenario,‬
‭we aim to take these issues into account so our app can run as expected without reduce the‬
‭performance of other aspects of the device.‬

‭5 Testing‬

‭5.1 Unit Testing‬

‭Our solution is primarily software based; this implies the necessity for proper unit testing for each‬
‭separate piece of functionality within our code. Because our main solution functionality is divided‬
‭among two separate technical areas, the Flutter frontend and our tracking backend, unit testing is‬
‭treated differently between the two implementations.‬

‭Within our frontend, unit testing occurs with each individual “widget”, or visual component of our‬
‭user interface to ensure items appear correctly on screen from our mobile application. This testing‬
‭ensures that the user experience of our app remains consistent and that there is a high ease of‬
‭access for users. It also ensures that data is properly being accessed within our application between‬
‭components to ensure accuracy. In terms of the tools used for unit testing within our frontend,‬
‭Flutter comes bundled with real-time debugging tools, useful for diagnosing and troubleshooting‬
‭problems that occur when running an app. These tools can be accessed via a locally hosted interface‬
‭accessible upon starting the Flutter app.‬

‭For testing the backend, we focused on the performance of our machine learning model. To test‬
‭this we started by reserving sections of our prepared dataset for testing and validation. When the‬
‭model goes under training, it takes a subset of the training frames from our dataset, trains on those‬
‭frames, then runs the model against a subset of validation frames. This process was completed over‬
‭a series of 400 epochs. Once the model was done training, we ran it against the testing frames to‬
‭verify its performance. Further testing was done once the model was integrated into our app.‬
‭Initially, we added a shortcut to the model within our app that bypassed the calibration section.‬
‭From there, we were able to run the model directly to verify that it was able to function within our‬
‭app.‬

‭5.2 Interface Testing‬

‭The interfaces included in our design include the user interface built within Flutter along with the‬
‭communication between the Ultralytics-Flutter plugin and the Flutter side. The graphical user‬
‭interface was testing by running our app and ensuring that all of the widgets were behaving as‬
‭expected. We also verified that certain function calls were being entered by adding print‬
‭statements within the functions that were displayed via the Flutter debugging output. For the‬
‭Ultralytics plugin, we were able to directly integrate the plugin within our app, so no external‬
‭communication was necessary. The Ultralytics plugin was verified for correctness with the‬
‭aforementioned model shortcut, along with print statements being added where necessary. As‬
‭there was no external communication between Flutter and the plugin, just being able to run the‬
‭model showed that our interfaces were behaving properly.‬

‭5.3‬ ‭Integration Testing‬

‭The main focus of our integration testing was ensuring that we were able to use our model after‬
‭performing the calibration. To verify this, we first displayed the calibration values after setup via‬
‭the debugging output. This confirmed that our initial values were being initialized correctly. After‬
‭calibration, the app moves to the actual tracking screen which utilizes the Ultralytics plugin. We‬
‭then printed out the setup values in that screen to confirm that the calibration values were being‬
‭passed to the tracking screen properly. Next, we ensured that the model itself ran properly after‬
‭moving to the tracking screen by displaying a red dot if it detected the ball. With these steps, we‬

‭were able to ensure that the integration between Flutter and our machine learning model behaved‬
‭as expected.‬

‭5.4‬ ‭System Testing‬

‭We performed system testing by using our app in a realistic environment. To achieve this, we went‬
‭out to the recreational softball fields, where we mounted a phone on a tripod and ran our app.‬
‭From there, we verified that our app functioned normally. In addition to Flutter’s reloading‬
‭capabilities, we were able to make small corrections to the code where needed and reload our app‬
‭while it was running to verify correctness. Based on the results we gathered from each testing‬
‭session on the field, we were able to make modifications to our code to mitigate issues that arose‬
‭during testing. After fixing any issues, we went back out to the field to test further.‬

‭During testing, we also verified our height calculation algorithm by holding the ball at a known‬
‭height. With the known height, we could observe the height that the model returned and verify‬
‭that what the model returned was correct. As we stored and displayed the setup values that are‬
‭used in our height calculation, we were able to easily make adjustments based on what the model‬
‭was outputting.‬

‭5.5‬ ‭Regression Testing‬

‭The main focus of our regression testing was based on changes we made to our machine learning‬
‭model. As Flutter is modular by design with the widget-based implementation, it was easy to make‬
‭changes to the Flutter side without changing large sections of code. For the machine learning‬
‭model, the Ultralytics plugin made it easy to specify what model we wanted to use. So, as we made‬
‭further refinements to our model, we were able to easily plug-in the new model and verify its‬
‭correctness by testing our app on the field.‬

‭5.6‬ ‭Acceptance Testing‬

‭To verify the correctness of our system, we based it on our design requirements. With our‬
‭requirements, we could easily tell if our app was providing accurate results. Specifically, we wanted‬
‭our app to be easy to set up as well as the illegal call being faster than a normal umpire with an‬
‭height accuracy being within ±4 inches.‬

‭To ensure this, we have members of the ISU softball team use our app to see how easy the setup and‬
‭use of our app would be for someone who has never used it. This ensured that we had an unbiased‬
‭opinion of our app along with accounting for any potential user errors that we missed. Finally, we‬
‭were able to verify our height calculation by holding the ball at a known height.‬

‭5.7‬ ‭Results‬

‭Based on our testing, our app functions very well based on our requirements. Our app is able to‬
‭detect the height of the ball in a ±6 inches, which is not within our desired range; however, future‬
‭refinements of our machine learning model would likely move the detected height within our‬
‭desired range. Next, our app was able to detect and call an illegal pitch in .22 seconds, which is just‬
‭above our desired goal of .2 seconds. Finally, for ease of use and setup, the ISU club softball‬
‭members stated that the setup of our app was simple, and that they would trust a system like this to‬
‭be used during actual softball games.‬

‭While our end metrics don’t quite meet our previously set goals, we believe that with further‬
‭training of our machine learning model, the performance of our app should fall within our desired‬
‭goals. In the end, we feel that we created a successful implementation of the desired product.‬

‭6 Implementation‬
‭Object Detection:‬

‭For our final deliverable we settled on utilizing only a YOLO model for object detection. We were‬
‭able to solely rely on the model because we were able to integrate the Ultralytics Flutter plugin into‬
‭our app which allowed us to utilize the iPhone CoreML hardware. By taking advantage of the‬
‭phone’s dedicated hardware for ML tasks, model inference speeds were quick enough to rely on it‬
‭for tracking and detection.‬

‭Pitch Detection:‬

‭As mentioned in 4.3.2, we first detect when a pitch is thrown before deducing if a pitch is illegal. We‬
‭do this by creating a bounding box around the pitcher’s mound and triggering our tracking only‬
‭when a ball is thrown after the pitcher is holding the ball within the bounding box for 2 seconds.‬
‭Additional logic for our pitch detection and system arming can be found in section 4.3.2.‬

‭Height Detection:‬

‭As mentioned in 4.3.2, we implemented our height calculation to use the coordinates of the ball,‬
‭home plate, and a known reference height, using coordinates from the YOLO model, to convert‬
‭pixel height to a height in feet.‬

‭We observed in the image below, that when we horizontally align the pitcher’s mound and the‬
‭home plate within a camera frame, that the vertical pixel-to-feet ratio is constant. Each green line‬
‭represents a reference height, measured on both the pitcher’s mound and home plate, and‬
‭connected by the green line. The distance between each line is one foot, and the pixels between‬
‭lines remain constant for each new height.‬

‭Using this knowledge, we can calculate the average pixel length from the known reference height‬
‭and the home plate, calculate the pixel height of the ball, and convert the pixel height to a height in‬
‭feet. When the maximum height of the pitch is found, we can then determine if the pitch is illegal‬
‭using the maximum and minimum height values.‬

‭Screen Development:‬

‭Our application contains multiple screens that flow from an initial application landing page to the‬
‭main camera screen as pictured below. These screens include:‬

‭-‬ ‭Landing Screen‬‭: acts as an initial screen which is presented to the user. This is the root of‬
‭the application and is where the user starts navigation.‬

‭-‬ ‭Instructions Screen:‬‭instructs the user on the method of calibration that is essential for‬
‭our applications functionality. This screen includes information as well a guided visuals on‬
‭how to properly calibrate our application on the following screen.‬

‭-‬ ‭Setup Values Screen‬‭: the user inputs a reference height (usually the height of a player or a‬
‭known-length object) as well as maximum and minimum ball thresholds.‬

‭-‬ ‭Calibration Screen‬‭: a series of timed camera screens that are used to obtain ball‬
‭coordinates as well as reference height points for height calculation.‬

‭-‬ ‭Camera Screen‬‭: displays the currently tracked softball as well as other information‬
‭essential for an end user to discern the height-tracking capabilities of our application.‬

‭The implementations of these screens as well as visual references to them can be viewed under‬
‭appendix one below.‬

‭7 Ethics and Professional Responsibility‬

‭7.1‬ ‭Areas of Professional Responsibility/Codes of Ethics‬

‭Area of‬
‭Responsibility‬

‭Definition‬ ‭IEEE Item‬ ‭Team Interaction‬

‭Work Competence‬ ‭Perform professional,‬
‭high-quality work‬

‭“To seek, accept, and‬
‭offer honest criticism‬
‭of technical work, to‬
‭acknowledge and‬
‭correct errors…”‬

‭The team focused on‬
‭this area by‬
‭developing solutions‬
‭and experimenting‬
‭with modern‬
‭technologies to ensure‬
‭we create the best‬
‭solution.‬

‭Financial‬
‭Responsibility‬

‭Deliver reliable‬
‭products that are‬
‭reasonably priced‬

‭“To be honest and‬
‭realistic in stating‬
‭claims or estimates‬
‭based on available‬
‭data…”‬

‭Our design choices‬
‭are based on usability,‬
‭such as having the‬
‭app be free and not‬
‭requiring an‬
‭additional camera,‬
‭which upholds this‬
‭area.‬

‭Communication‬
‭Honesty‬

‭Report truthful work‬
‭to shareholders‬

‭“To be honest and‬
‭realistic in stating‬
‭claims or estimates‬
‭based on available‬
‭data…”‬

‭We have upheld this‬
‭area by meeting‬
‭weekly with the client‬
‭and frequently‬
‭communicating our‬
‭progress and design‬
‭choices.‬

‭Health, Safety,‬
‭Well-Being‬

‭Minimize‬
‭shareholders’ health‬
‭and safety risks‬

‭“To hold paramount‬
‭the safety, health, and‬
‭welfare of the‬
‭public…”‬

‭The team wanted to‬
‭minimize injury risk‬
‭during the setup of‬
‭our product, which‬
‭helped lead us to our‬
‭app-based solution,‬
‭which eliminated the‬
‭need to set up‬
‭multiple cameras.‬

‭Property Ownership‬ ‭Respect the property‬
‭of others‬

‭“To credit properly‬
‭the contributions of‬
‭others…”‬

‭We followed this area‬
‭by acknowledging the‬
‭individual‬
‭contributions of the‬
‭team and by‬
‭collaborating on‬
‭different areas of the‬
‭project so multiple‬

‭members could gain‬
‭knowledge in multiple‬
‭areas.‬

‭Sustainability‬ ‭Protect environmental‬
‭and natural resources‬

‭“To strive to comply‬
‭with ethical design‬
‭and sustainable‬
‭development‬
‭practices…”‬

‭We focused on this‬
‭area by making our‬
‭app cross-compatible‬
‭and usable on‬
‭multiple iterations of‬
‭phones, meaning our‬
‭users will not need to‬
‭continue to purchase‬
‭new devices to use‬
‭our product.‬

‭Social Responsibility‬ ‭Make products that‬
‭benefit society‬

‭“To improve the‬
‭understanding by‬
‭individuals and‬
‭society…”‬

‭Our team has a‬
‭responsibility to‬
‭produce accurate data‬
‭and to better the‬
‭experience of rec‬
‭league slowpitch‬
‭softball players and‬
‭umpires, so we‬
‭focused on making‬
‭our solution easy to‬
‭use and available to‬
‭slowpitch leagues.‬

‭Best Area of Responsibility; Social Responsibility:‬

‭We have chosen to approach this standard by designing our project to prioritize affordability,‬
‭portability, and easy accessibility for local communities to have access to simple officiating‬
‭assistance. Although this further complicates our software tracking model, it simplifies the‬
‭application for the community. This decision in our development was ethically driven with the‬
‭community in mind rather than solely for efficient development.‬

‭Worst Area of Responsibility; Sustainability:‬

‭We haven’t been prioritizing the efficiency and runtime of our code up to this point as we’re trying‬
‭to get prototypes working, which could result in more power consumption and more contribution‬
‭to negative environmental impacts. Our team plans on working to not only write code but to refine‬
‭it to be as efficient as possible. Thus reducing the amount of power needed to run our app.‬

‭7.2 Four Principles‬

‭Beneficence‬ ‭Nonmaleficence‬ ‭Respect for‬
‭Autonomy‬

‭Justice‬

‭Public health,‬
‭safety, and‬

‭welfare‬

‭Our product‬
‭aims to improve‬
‭the state of rec‬
‭league softball‬
‭games, which‬
‭benefits the‬
‭enjoyment of‬
‭everyone‬
‭involved.‬

‭We are avoiding‬
‭using multiple‬
‭cameras which‬
‭reduces risk‬
‭during setup and‬
‭improves the‬
‭usability of our‬
‭product.‬

‭We allow users to‬
‭store past pitches,‬
‭so they can make‬
‭their own decisions‬
‭based on‬
‭non-subjective‬
‭data, improving‬
‭the enjoyment of‬
‭the game.‬

‭Our app will‬
‭provide‬
‭unbiased, real‬
‭data to help‬
‭officiate games,‬
‭which will‬
‭improve the‬
‭fairness of the‬
‭game.‬

‭Global,‬
‭cultural, and‬

‭social‬

‭Promotes fair‬
‭play by providing‬
‭an objective tool‬
‭for measuring‬
‭pitch height,‬
‭which will‬
‭reduce‬
‭arguments‬
‭between players‬
‭and officials.‬

‭Keeping our‬
‭solution focused‬
‭on a single‬
‭device allows a‬
‭normal game of‬
‭softball to play‬
‭normally without‬
‭disrupting the‬
‭existing league‬
‭culture.‬

‭Since the height‬
‭range of our app‬
‭will be‬
‭customizable,‬
‭different cultures‬
‭and leagues can set‬
‭up the app to work‬
‭for their needs.‬

‭The height range‬
‭customization of‬
‭our app will‬
‭allow multiple‬
‭leagues with‬
‭different rules to‬
‭improve the‬
‭equality of how‬
‭the game is‬
‭called.‬

‭Environmental‬ ‭Focusing on‬
‭developing our‬
‭project on a‬
‭phone reduces‬
‭the need for‬
‭multiple tracking‬
‭cameras‬
‭benefitting the‬
‭environmental‬
‭impact.‬

‭Avoiding‬
‭multiple cameras‬
‭allows our users‬
‭to use an existing‬
‭phone instead of‬
‭having to pay‬
‭and ship a new‬
‭camera.‬

‭Our product allows‬
‭users to choose to‬
‭use their existing‬
‭phone instead of‬
‭making more‬
‭environmental‬
‭impacts by paying‬
‭for more cameras.‬

‭Our app will be‬
‭able to be‬
‭utilizied by all‬
‭leagues, even‬
‭ones with limited‬
‭resources. This‬
‭keeps them form‬
‭needing to invest‬
‭in other cameras‬
‭that may‬
‭contribute to‬
‭environmental‬
‭damage.‬

‭Economic‬ ‭Our solution is‬
‭free which‬
‭eliminates the‬
‭need to purchase‬
‭expensive‬
‭tracking‬
‭equipment.‬

‭Using one device‬
‭to perform all of‬
‭the tracking‬
‭helps us keep the‬
‭app free because‬
‭we can forgo the‬
‭cost of an‬
‭additional‬
‭camera.‬

‭A league can make‬
‭their own choices‬
‭on whether or not‬
‭to use our app or‬
‭not, which gives‬
‭them control over‬
‭any economicals‬
‭adjustments it my‬
‭require such as a‬
‭league phone to‬
‭use the app.‬

‭The free price‬
‭point of our app‬
‭allows a wide‬
‭range of leagues‬
‭with different‬
‭financial‬
‭backgrounds can‬
‭utilize our app to‬
‭improve the‬
‭league.‬

‭Area We Focused On; Public health, safety, and welfare X Beneficence:‬

‭We are aiming to improve the enjoyment of the game. We plan to achieve this by ensuring simple‬
‭setup for umpires, returning accurate data so the right calls are constantly being made, and being‬
‭configurable for different height ranges so it can be used by a variety of leagues.‬

‭Area of Improvement; Environmental X Respect For Autonomy:‬

‭Based on the result of further testing, we may end up needing to restrict our app to only work on‬
‭phones with a certain camera quality. Older phones with worse may not be able to provide the data‬
‭needed for accurate tracking. This could result in leagues without immediate access to a high‬
‭quality phone having to purchase a new device through shipping methods that contribute to‬
‭environmental damage.‬

‭We plan on overcoming this negative aspect by ensuring our app can run on phones that are widely‬
‭available and already owned by a majority of people. This will keep the availability of our app high‬
‭and will reduce the need to purchase a new device.‬

‭7.3 Virtues‬

‭●‬ ‭Accuracy‬
‭○‬ ‭We strive to provide accuracy for our users, as it is important for illegal pitches to‬

‭be called correctly so as to not cause distress between players, officials, and fans.‬
‭○‬ ‭We will achieve this virtue by continuously refine our ball tracking code and‬

‭provide easy-to-use calibration steps so our app can be calibrated to fit the needs of‬
‭each field.‬

‭●‬ ‭Empathy‬
‭○‬ ‭Our app is solely focused on bettering the game for players, officials, and fans. We‬

‭want to ensure that we are always prioritizing their needs over what makes it easier‬
‭for us.‬

‭○‬ ‭Communicating our design choices with our client and collecting feedback from‬
‭testing are how we will ensure that we are always taking user needs into account.‬

‭●‬ ‭Innovation‬
‭○‬ ‭We want our product to be easily integrating into existing leagues. So, we are‬

‭innovating a single camera design approach that will make it easy to set up without‬
‭the needs for multiple cameras.‬

‭○‬ ‭Constant prototyping and research into different tracking methods will help keep‬
‭us engaged with new ideas and strategies as to how to improve our single camera‬
‭solution. Current team innovation like or height line system are already helping us‬
‭improve our height detection methods.‬

‭Each team member should also answer the following:‬

‭●‬ ‭Identify one virtue you have demonstrated in your senior design work thus far? (Individual)‬
‭o‬ ‭Why is it important to you?‬
‭o‬ ‭How have you demonstrated it?‬

‭●‬ ‭Identify one virtue that is important to you that you have not demonstrated in your senior‬
‭design work thus far? (Individual)‬

‭o‬ ‭Why is it important to you?‬

‭o‬ ‭What might you do to demonstrate that virtue?‬

‭●‬ ‭Andrew‬
‭o‬ ‭Demonstrated Virtue: Open-mindedness‬

‭▪‬ ‭Throughout the project, I consistently researched new and more effective‬

‭ways for our team to track softball. As our project constraints evolved, I‬
‭adapted my approach to object detection accordingly. For example, after‬
‭spending time developing a solution using OpenCV, I discovered the‬
‭Ultralytics plugin, which allowed us to run a YOLO model on the phone‬
‭with fast enough performance to handle both detection and tracking. Even‬
‭though this made much of my earlier work obsolete, I was willing to pivot‬
‭and focus on learning how to integrate the new approach because it was‬
‭ultimately better for the team and the project.‬

‭▪‬ ‭This virtue matters to me because in software engineering, nothing stays‬

‭static, tools, requirements, and best practices change constantly. Being‬
‭open to new ideas, even when it means moving on from something you’ve‬
‭already invested in, is critical for building the best possible solution.‬

‭o‬ ‭Non-Demonstrated Virtue: Communication‬

‭▪‬ ‭Communication was one virtue that I find very important even though I‬

‭may have not been the best at it during this project. I often got deep in the‬
‭weeds of researching and experimenting with different object detection‬
‭technologies but ended up failing to fully communicate what I was doing‬
‭and why. Communication is important to me because no matter how good‬
‭the technical solution is, it doesn't matter if the rest of the team doesn't‬
‭understand it or can’t efficiently work with it or integrate it with the rest of‬
‭the application.‬

‭▪‬ ‭Moving forward, I plan to be more intentional about communicating‬

‭decisions, updates and reasoning behind changes, by summarizing key‬
‭shifts in meetings and documenting decisions in shared notes.‬

‭●‬ ‭Casey‬
‭o‬ ‭Demonstrated Virtue: Persistence‬

‭▪‬ ‭I have primarily been able to aid in code refactorization, UI revamping,‬

‭and testing this past semester. I feel that my contributions aided in the‬
‭success of our project despite various roadblocks that may have occurred‬
‭along the way.‬

‭▪‬ ‭This virtue is important to me as being able to balance project needs with‬

‭other work, study, or personal needs is critical to the success of a project.‬

‭o‬ ‭Non-Demonstrated Virtue: Communication‬

‭▪‬ ‭I feel that this semester my communication wasn’t as effective as it has‬

‭been in the past. There were times with work, studies, and other‬

‭circumstances that caused me to regrettably fall behind on some‬
‭important decisions; this caused miscommunication and error in my work‬
‭when certain features were being worked on in parallel, for example‬
‭causing certain feature changes to become obsolete in the face of new‬
‭features being pushed out.‬

‭▪‬ ‭Ultimately, this was a learning experience for me, and I am confident in‬

‭our final product and my ability to communicate effectively in the future. I‬
‭will continue to work on asserting myself in team spaces to ensure my‬
‭progress aligns with others.‬

‭●‬ ‭Sully‬

‭o‬ ‭Demonstrated Virtue: Persistence‬

‭▪‬ ‭With any project, there are bound to be roadblocks that come up that‬

‭prevent progress. I believe it is essential that I am persistent in attacking‬
‭these roadblocks and continuing to experiment so that we can solve our‬
‭problems.‬

‭▪‬ ‭I demonstrated this virtue by continuing to attempt to integrate our C++‬

‭code into the Flutter app. There have been many issues with the‬
‭integration, mainly stemming from the OpenCV libraries having issues‬
‭running on iOS, and I need to persist through this issue so we can‬
‭complete our app. While I haven’t been able to fully integrate the code yet,‬
‭I have made good progress through the OpenCV tracking framework for‬
‭iOS I helped create.‬

‭o‬ ‭Non-Demonstrated Virtue: Adaptability‬

‭▪‬ ‭We are utilizing many different technologies in the making of our app. So,‬

‭it is important that I become familiar with the all of the technologies we‬
‭are using, so I now how all of the components work together in detail.‬

‭▪‬ ‭I will demonstrate this virtue by pairing with other team members who are‬

‭working on different areas and learning how they developed their ideas so‬
‭I can help with issues in the future.‬

‭●‬ ‭Cameron‬

‭o‬ ‭Versatility‬

‭▪‬ ‭This project has brought me outside of my comfort zone numerous times‬

‭and required me to do things I have no experience with. Learning flutter‬
‭and all of the ML topics was new to me and forced me to go outside my‬
‭current knowledge to complete the tasks.‬

‭▪‬ ‭This is important to me because it is a necessity in the workforce. New‬

‭technologies are constantly popping up, so a good engineer must be able‬
‭to adapt to these new technologies and learn how to best use them.‬

‭o‬ ‭Communication‬

‭▪‬ ‭I felt like this semester, I wasn’t always communicating well with my team‬

‭and that hurt my work. With better communication I would be able to‬
‭work through issues quicker and help the engineering process as whole.‬

‭▪‬ ‭Hopefully, I’ll be able to attend the weekly meetings next semester which‬

‭will help immensely. Other than that, I just need to be more willing to‬
‭reach out to my teammates for help and to keep them updated on my‬
‭progress.‬

‭●‬ ‭Ethan‬

‭o‬ ‭Demonstrated Virtue: Diligence‬

‭▪‬ ‭Throughout working on this senior project I felt I showed the virtue of‬

‭diligence by persistently achieving weekly goals. I did this by making‬
‭weekly update presentations for our advisory and team to outline our‬
‭contributions for the week, the current integration of our components,‬
‭and the steps we must take to move forward. Diligently staying updated‬
‭with my team and planning for the future was my strongest virtue I‬
‭showed in this project.‬

‭o‬ ‭Non-Demonstrated Virtue: Conviction‬

‭▪‬ ‭During many of the project’s life cycle there were times where I believe‬

‭something wasn’t working effectively or there was an issue with the team’s‬
‭development cycle. However, many times I did speak up to these issues.‬
‭My actions and communication between the group occasionally did not‬
‭align with my beliefs and I should have spoken up about issues within our‬
‭project and showed conviction to stand up for what I believe was right. I‬
‭will work on speaking up in groups and being direct in my thoughts of‬
‭situations that arise during development cycles.‬

‭●‬ ‭Josh‬

‭o‬ ‭Demonstrated Virtue: Creativity‬

‭▪‬ ‭One virtue I feel like I demonstrated pretty well during this project for the‬

‭most part was creativity, and coming up with different and unique‬

‭solutions to some of our problems we were having within the group. We‬
‭had quite a few problems and issues as a group, on top of just individually,‬
‭but I felt like I did a good job at thinking of creative ways to come up with‬
‭a solution to our project and different small problems.‬

‭●‬ ‭Non-Demonstrated Virtue: Persistence‬

‭▪‬ ‭One thing I struggled with personally on this project was finding the‬

‭strength and strategies to push past some of my or our team's struggles. I‬
‭obviously tried my best to get past some of these struggles, but I still felt‬
‭like I was stuck on a wall at some parts of the project and even with some‬
‭creativity some lack of solutions definitely demotivated me a little bit.‬
‭Additionally, sometimes I wasn’t sure in what direction I could help the‬
‭project in at certain times, and I definitely tried improving this part of‬
‭myself during most of this project to get to a point where I’m confident I‬
‭can fix these issues to be less of an issue in the future.‬

‭8 Closing Material‬

‭8.1 Conclusion‬

‭We were able to fully integrate the three main parts of our project laid out from the first semester.‬
‭This included the object and tracking functionality, calculations for determining the height of the‬
‭pitch and a full app design. We ended up pivoting from using C++ code in our app since it caused‬
‭performance issues while running Flutter and we found a better way to integrate the YOLO model‬
‭into our app that allowed us to take advantage of the CoreML architecture on newer iPhones. By‬
‭utilizing the ML architecture we were able to massively improve inference speeds to the point where‬
‭we no longer needed OpenCV’s tracking modules further reducing our need for running C++ code.‬
‭Unfortunately though due to time constraints and issues with translating our trained YOLO model‬
‭to a format compatible with Androids ML architecture we were unable to make our app cross‬
‭platform. In the future if another senior design group ends up working on our project they will‬
‭need to focus on training a more refined version of our YOLO model, translating it to a format‬
‭compatible with Android and performing more exhaustive testing.‬

‭8.2 References‬

‭[1] “C Interop using Dart:FFI,” Dart, https://dart.dev/interop/c-interop (accessed Dec. 7, 2024).‬

‭[2] “Required packages,” OpenCV, https://docs.opencv.org/4.x/d5/da3/tutorial_ios_install.html‬
‭(accessed Dec. 7, 2024).‬

‭[3] “Material library,” material library - Dart API,‬
‭https://api.flutter.dev/flutter/material/material-library.html (accessed Dec. 7, 2024).‬

‭9 Team‬

‭9.1 T‬‭EAM‬ ‭M‬‭EMBERS‬

‭●‬ ‭Ethan Gruening‬
‭●‬ ‭Casey Gehling‬
‭●‬ ‭Sullivan Fair‬
‭●‬ ‭Josh Hyde‬
‭●‬ ‭Cameron Mesman‬
‭●‬ ‭Andrew Vick‬

‭9.2 R‬‭EQUIRED‬ ‭S‬‭KILL‬ ‭S‬‭ETS‬ ‭FOR‬ ‭Y‬‭OUR‬ ‭P‬‭ROJECT‬

‭●‬ ‭App Development‬
‭●‬ ‭Flutter Framework‬
‭●‬ ‭Machine Learning‬
‭●‬ ‭Yolo/Ultralytics‬
‭●‬ ‭IOS Development‬

‭9.3 S‬‭KILL‬ ‭S‬‭ETS‬ ‭C‬‭OVERED‬ ‭BY‬ ‭THE‬ ‭T‬‭EAM‬

‭●‬ ‭Ethan Gruening: App Development, User Testing, Android Studio Emulation‬
‭●‬ ‭Casey Gehling: App Development, Flutter‬
‭●‬ ‭Sullivan Fair: App Development, Frameworks‬
‭●‬ ‭Josh Hyde: Flutter, App Development, Testing, Android‬
‭●‬ ‭Cameron Mesman: App development, Flutter, C++‬
‭●‬ ‭Andrew Vick: App development, ML training, Swift, Flutter‬

‭9.4 P‬‭ROJECT‬ ‭M‬‭ANAGEMENT‬ ‭S‬‭TYLE‬ ‭A‬‭DOPTED‬ ‭BY‬ ‭THE‬ ‭TEAM‬

‭●‬ ‭Agile‬

‭9.5 I‬‭NITIAL‬ ‭P‬‭ROJECT‬ ‭M‬‭ANAGEMENT‬ ‭R‬‭OLES‬

‭●‬ ‭Team Organization‬‭: Ethan Gruening‬
‭●‬ ‭Client Interaction‬‭: Casey Gehling‬
‭●‬ ‭Machine Learning Integration‬‭: Andrew Vick‬
‭●‬ ‭Individual Component Development‬‭: Sullivan Fair‬
‭●‬ ‭Research‬‭: Josh Hyde‬
‭●‬ ‭Testing‬‭: Cameron Mesman‬

‭9.6 Team Contract‬

‭Team Name ____________sdmay25-11________________‬

‭Team Members:‬

‭1) __________Andrew Vick__________ 2) ________Casey Gehling___________‬

‭3) __________Cameron Mesman______ 4) ________Joshua Hyde_____________‬

‭5) __________Ethan Gruening________ 6) ________Sullivan Fair_____________‬

‭Team Procedures‬

‭Day, time, and location (face-to-face or virtual) for regular team meetings:‬

‭1 pm every Wednesday (possibly)‬

‭2 pm every Monday with advisor (Dr. Fila)‬

‭Preferred method of communication updates, reminders, issues, and scheduling (e.g.,‬
‭e-mail, phone, app, face-to-face):‬

‭Discord‬

‭Decision-making policy (e.g., consensus, majority vote):‬

‭Majority Vote‬

‭Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be‬
‭shared/archived):‬

‭Andrew Vick will record meeting minutes, which will be stored in a document on our drive, and I‬
‭will send a message in Discord for that meeting.‬

‭Ethan Gruening will record meeting notes, which will be stored in a document on the team’s shared‬
‭drive.‬

‭Participation Expectations‬

‭Expected individual attendance, punctuality, and participation at all team meetings:‬

‭We are expected to attend, share, and be on time for all meetings‬

‭Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:‬

‭Everyone is expected to meet deadlines, make meaningful contributions to the project, and be on‬
‭time.‬

‭Expected level of communication with other team members:‬

‭Everyone is expected to be active in the discord and respond to teamwide questions within one‬
‭business day.‬

‭Expected level of commitment to team decisions and tasks:‬

‭Everyone is expected to be committed to team decisions and tasks. This extends to actively‬
‭engaging in discussions and conveying your ideas.‬

‭Leadership‬

‭Leadership roles for each team member (e.g., team organization, client interaction,‬
‭individual component design, testing, etc.):‬

‭Team Organization‬‭: Ethan Gruening‬

‭Client Interaction‬‭: Casey Gehling‬

‭Machine Learning Integration‬‭: Andrew Vick‬

‭Individual Component Development‬‭: Sullivan Fair‬

‭Research‬‭: Josh Hyde‬

‭Testing‬‭: Cameron Mesman‬

‭Strategies for supporting and guiding the work of all team members:‬

‭Weekly standup meetings where we discuss the week's events and ensure everyone is keeping up‬
‭with the workload.‬

‭Strategies for recognizing the contributions of all team members:‬

‭During weekly standup every member will share what they worked on and any information they‬
‭found regarding the development of our product. This allows every member to share their‬
‭contributions and receive feedback.‬

‭Collaboration and Inclusion‬

‭Andrew Vick, Software Engineering. Some of my relevant skills include C/C++, Python, and IoT‬
‭devices. Most of my experience has come from personal projects for instance, using Python, I‬
‭created my own virtual assistant.‬

‭Casey Gehling, Computer Engineering. Relevant technical skills are Embedded Programming,‬
‭Networking, Fullstack Development, and UI Design. Additionally, I have relevant experience in‬
‭client communication and requirements gathering.‬

‭Sullivan Fair, Software Engineering. Relevant skills include general coding knowledge of Java, C, C#,‬
‭Python, JavaScript, AWS knowledge, GIT, and cybersecurity knowledge.‬

‭Ethan Gruening, Software Engineering. My relevant skills include, but are not limited to, Python, C,‬
‭Java, JavaScipt, and AWS. Most of my projects/experiences involve user interphases, I/O devices,‬
‭and API service integrations.‬

‭Josh Hyde, Computer Engineering. My relevant skills are generic coding in C/C++ and Java, and‬
‭some database work with MySQL. I also have been in different groups before and have had to work‬
‭together towards a common project goal.‬

‭Cameron Mesman, Computer Engineer. My relevant skills are coding with C and Java. I have‬
‭experience programming embedded systems, app design (backend, frontend, and database‬
‭languages), and computer architecture.‬

‭Strategies for encouraging and supporting contributions and ideas from all team members:‬

‭Goal-Setting, Planning, and Execution‬

‭Team goals for this semester:‬

‭Create a full implementation of our app‬

‭Perform user testing‬

‭Strategies for planning and assigning individual and teamwork:‬

‭During team meetings, we will identify what needs to be worked on for the week. From there, we‬
‭will assign who tackles which task based on their expertise.‬

‭Strategies for keeping on task:‬

‭Weekly goals and check-ins‬

‭Consequences for Not Adhering to Team Contract‬

‭How will you handle infractions of any of the obligations of this team contract?‬

‭In the event of an infraction by a team member, the team as a whole will reach out to the member‬
‭to see why they aren’t adhering to our contract.‬

‭What will your team do if the infractions continue?‬

‭If the infractions continue and we cannot resolve the issue internally, we will finally reach out to‬
‭Professor Fila regarding the member.‬

‭***‬

‭a) I participated in formulating the standards, roles, and procedures as stated in this contract.‬

‭b) I understand that I am obligated to abide by these terms and conditions.‬

‭c) I understand that if I do not abide by these terms and conditions, I will suffer the‬

‭consequences as stated in this contract.‬

‭1) _________________Sullivan Fair_____________________ DATE __09/18/2024_______‬

‭2) _________________Andrew Vick_____________________ DATE __09/18/2024_______‬

‭3) _________________Casey Gehling____________________ DATE __5/1/2025_______‬

‭4) _________________Ethan Gruening___________________ DATE __5/1/2025_______‬

‭5) _________________Josh Hyde_______________________ DATE __4/28/2025_______‬

‭6) _________________Cameron Mesman_________________ DATE __5/1/2025_______‬

‭Appendix 1: Instruction Manual‬
‭1.‬ ‭Open the app‬

‭a.‬ ‭The user will see the Home page with a ‘Start’ button‬

‭2.‬ ‭Click ‘Start’‬
‭a.‬ ‭The user will move to the instructions screen with details on how to properly set‬

‭up the camera and calibration‬

‭3.‬ ‭Click ‘Done’‬

‭a.‬ ‭The user will be presented a screen to input their desired calibration values‬

‭4.‬ ‭Click ‘Start Calibration’‬
‭a.‬ ‭The user will be prompted to place the ball at three positions: on home plate, held‬

‭at the reference height, and on the pitcher’s mound‬
‭b.‬ ‭There will be a 15 second countdown before each picture is taken‬

‭5.‬ ‭After the calibration process, the user will be taken to the tracking screen‬
‭a.‬ ‭From here, the app is fully set up and the camera should not be moved as it would‬

‭compromise the calibration‬
‭b.‬ ‭The ball needs to be in the bounding box for two seconds for the system to arm‬

‭itself‬

‭Appendix 2: Design Considerations‬
‭The team was able to create a working implementation of our app. However, there are certain areas‬
‭of our design that we know can be improved upon in future work. These areas include the YOLO‬
‭model, testing height accuracy, system stress testing, and adding a review section for past pitches.‬

‭First, our YOLO model is very one dimensional, meaning that it is trained in only a single lighting‬
‭conditions in an ideal scenario. While we added augmentations to the images to make the model‬
‭more robust, it likely isn’t enough to cover the various lighting conditions that can be seen during a‬
‭softball game. Training the model on a more diverse dataset will help make it more well-rounded‬
‭for a variety of game conditions.‬

‭Next, further testing should be done on the height calculation. We currently have an accuracy of ±6‬
‭inches; however, because this is the core part of our app, more testing needs to be done to ensure‬
‭that the range is consistent. Further training of our YOLO model will also result in more testing‬
‭being needed for the height calculation as the accuracy of the model can directly affect the height‬
‭calculation.‬

‭Third, our system needs to be fully stress tested. We tested in pretty ideal conditions this semester‬
‭to ensure the core functionality of our app would work in practice. That being said, more rigorous‬
‭testing needs to be done to ensure users are not able to break the app. Rigorous stress testing will‬
‭allow for unknown bugs and errors to be found as the app is pushed to its limits. These kinds of‬
‭tests could include placing the camera in non-ideal positions, having drastic lighting changes occur,‬
‭or having multiple softballs in frame at a single time.‬

‭Finally, we would have liked to have a feature where users could go back and review past pitches‬
‭and how they were called. With a “machine” umpire, users will likely want a way to verify what the‬
‭app saw and see if it is correct. Having a past pitches screen would allow for users to go back and‬
‭review the app's performance and ensure that it is providing accurate results. However, due to‬
‭current limitations with the Ultralytics-Flutter plugin’s proprietary camera controller, we were not‬
‭able to add it successfully.‬

‭Appendix 3: Alternate Designs‬
‭Throughout 491 and 492 we implemented many different prototypes to test the functionality of our‬
‭application. Through testing and future development, the alternative design prototypes were‬
‭overwritten or discarded from the final deliverables. It is important to note the designs that failed,‬
‭and those that are now incompatible as they are a part of the design process and were a part of‬
‭successful developmental cycles by leading our project in more effective direction.‬

‭OpenCV and KCF Tracking‬

‭In the planning phase of our development, we valued the accuracy of a system that integrates both‬
‭machinelearning and non-machine learning techniques for object detection and object tracking.‬
‭We developed multiple softball tracking prototypes that utilized the integration of OpenCV and‬
‭YOLO tools to efficiently compute where a softball is located within a frame while restricting our‬
‭reliance on machine learning models.‬

‭OpenCV is an image processing library for Python and C++ which can use multithreaded‬
‭approaches to quickly analyze an image for specific colors, textures, and patterns. OpenCV also‬
‭offers tracking modules which identify a moving object in frame, such as the KCF tracking‬
‭algorithm.‬

‭In prototypes that were disconnected from the Flutter application, the OpenCV and KCF tracking‬
‭tools performed very well when finding the softball by color, but could often not initially find the‬
‭ball. The YOLO model, with a higher runtime and reliability, was able to initially find the ball and‬
‭routinely check the OpenCV and KCF algorithms are still tracking the softball every 30 frames as‬
‭shown below.‬

‭The YOLO model used within this prototype was a trained on a small collection of images where‬
‭the softball was within 3 feet of the camera and indoors. This training data was too small and did‬
‭not fit our application’s true environment to train an effective model. As our development‬
‭continued, we collected and annotated over 9,000 images in a new YOLO model, which performed‬
‭at 30fps and had very accurate tracking results. The machine learning tracking outperformed the‬
‭non-machine learning OpenCV and KCF algorithms and led us to focus on a machine learning‬
‭object tracking system. Although the integrated tracking system was removed, it taught us the‬
‭importance of replicating training data to the system’s environment to better utalize modern‬
‭computer vision tools.‬

‭C++ Flutter Bridge‬

‭During the initial integration of our softball-tracking solution into our Flutter application, we were‬
‭researching potential ways to create the bridge between our original C++ backend running OpenCV‬
‭and our Flutter frontend. We had experimented with Dart FFI, a native Flutter library capable of‬
‭interacting with C++ code from the front end of our application. We had made progress with‬
‭constructing this bridge, even reaching the point where our model was callable from our front end‬
‭returning with ball coordinates, albeit this process introduced much latency hindering the user‬
‭experience of our application. We managed to obtain frames of real-time tracking which‬
‭dramatically fell short of our project requirements, taking minutes to return each coordinate from‬
‭the backend.‬

‭Our team attempted to reconstruct our application’s communication between the frontend and‬
‭backend and mitigate our CPU consumption by multithreading, passing memory pointers instead‬
‭of images, and decreasing the image size. Ultimately, as we began to adopt a solution revolving‬
‭around using the Ultralytics plugin to allow for automatic camera handling and pipelined model‬
‭processing. The C++ backend prototype was removed as a underperformant alternative to the‬
‭Ultralytics plugin. Although this prototype was removed from future development, it gave our team‬
‭a chance to further investigate our app’s CPU usage and analyze performance issues.‬

‭Past Pitches Screen‬

‭Originally, our application included recordings of past pitches as‬
‭they transpired within a softball game. This was done by using‬
‭Flutter’s CameraController class to record from the camera and‬
‭save the video within the application with an indication of‬
‭“Illegal” or “Valid”. The users could then click the “Past Pitches”‬
‭button on the camera screen to view the last pitch.‬

‭However, after adopting the Ultralytics plugin that used its own‬
‭CameraController, it became difficult to refactor this feature since‬
‭only one CameraController can be active at one time. Regaining‬
‭access to the camera for the Past Pitches screen without heavily‬
‭modifying the underlying source code revolving around the‬
‭Ultralytics plugin would be too invasive to the library and remains‬
‭an incompatible feature.‬

‭The Past Pitches screen prototype still encourages our team to‬
‭find a way to communicate data from previously analyzed pitches‬
‭to the user. With video unavailable, our team has discussed the‬
‭opportunity to include graphs of the coordinates throughout the‬
‭pitch, detected by the model, paired with lines indicating the‬
‭maximum and minimum height requirements.‬

‭Appendix 4: Code Analysis‬
‭There are many directories in our code repository necessary for the Flutter framework. However,‬
‭the bulk of our development lies in the ‘lib’, ‘ultralytics_yolo’ and ‘assets’ folders.‬

‭The assets folders contain the different YOLO models we trained, images, and the mp3 for the‬
‭illegal audio. The best models we obtained from our training were the ‘bestv8-img640.mlmodel’, a‬
‭YOLOv8n model, and the ‘best-yolo11s.mlmodel’, a YOLOv11s model.‬

‭For lib, that contains the various screens including the home page, instructions, calibration, and‬
‭tracking screens. Main.dart routes the user to the various screens of the app. Setup.dart does the‬
‭same things as main.dart, but for once the user enters the setup of the tracking. The rest of the‬
‭.dart files in the views folder represent the various screens a user will interact with when using the‬
‭app. Yolo_screen.dart is the screen where the tracking of the softball is performed. The widgets‬
‭folder contains assets like buttons that can be plugged into various screens. This is one of the main‬
‭benefits of the Flutter framework.‬

‭Finally, the ultralytics_yolo folder contains the entire Ultralytics-Flutter plugin that we included‬
‭locally in our repo. The plugin is open-source, and because we needed to make some‬
‭customizations to the code for it to work for our desired camera orientation, we copied it locally‬
‭and made changes.‬

